
Discussion 8 @ 2024-11-04 23:05:00Z

Data C182 Designing, Visualizing & Understanding DNN
Fall 2024 Eric Kim, Naveen Ashish Discussion 8

This discussion covers select questions from the midterm exam.

1. Initialization
In class, we discussed how, when initializing neural network weights, we tend to choose them randomly
from e.g., a Gaussian distribution of a certain variance and mean. Why is this the case? Let’s walk through
some alternatives.

For the sake of simplicity, assume that your neural network consists only of consecutive affine layers and
ReLU non-linearities, and that there is at least one such non-linearity. All hidden layers can have an arbitrary
number of elements ≥ 1. You can also assume batch sizes of 1 for training (though your answers should
hold for arbitrary batch size). Finally, assume that there is some loss function L(y) that takes in the output
of your neural network y, and that loss is used to train your neural network with standard gradient descent
(i.e., no momentum, gradient clipping, RMSProp, etc).

For this problem, use this small two affine layer neural network, where x is a two-element column vector:

out = W2

[
ReLU (W1x+ b1)

]
+ b2

Where W1 ∈ R2×2, b1 ∈ R2, W2 ∈ R2×2, b2 ∈ R2.

0.1 Part A.i

Suppose that all weights W1,W2 and biases b1, b2 for all layers are initialized to zero. The input x =

[
1
2

]
.

What is the output of the neural network?

Solution:

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1



Discussion 8 @ 2024-11-04 23:05:00Z

Solution: Zero Initialization

(a) Forward Pass:

Given all weights and biases are initialized to zero:

W1 =

[
0 0
0 0

]
, b1 =

[
0
0

]
, W2 =

[
0 0
0 0

]
, b2 =

[
0
0

]

Compute the activations:

h = W1x+ b1 =

[
0
0

]

a = ReLU(h) =

[
0
0

]

out = W2a+ b2 =

[
0
0

]

Therefore, the output of the neural network is:

out =

[
0
0

]

0.2 Part A.ii

Suppose that the final gradient dL
dout

=

[
0.1
0.2

]
. What are the gradients over final Linear layer’s weights and

biases dL
dW2

and dL
db2

?

Solution:

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2



Discussion 8 @ 2024-11-04 23:05:00Z

Solution: Gradients for Final Linear Layer

Given:
dL

dout
=

[
0.1
0.2

]
, a =

[
0
0

]
During backpropagation, we compute gradients with respect to weights and biases.
- For the final layer:

∂L

∂W2
=

∂L

∂out
· aT =

[
0.1
0.2

] [
0 0

]
=

[
0 0
0 0

]

∂L

∂b2
=

∂L

∂out
=

[
0.1
0.2

]
- For the first layer:

∂L

∂W1
=

(
W T

2

∂L

∂a

)
⊙ ReLU′(h) · xT =

[
0
0

]
⊙

[
0
0

]
·
[
1 2

]
=

[
0 0
0 0

]

∂L

∂b1
=

(
W T

2

∂L

∂a

)
⊙ ReLU′(h) =

[
0
0

]

0.3 Part A.iii
What are the gradients over first Linear layer’s weights and biases dL

dW1
and dL

db1
?

Solution:

Solution: Gradients for First Linear Layer

Given:

a = ReLU(W1x+ b1) =

[
0
0

]
, W1 =

[
0 0
0 0

]
, b1 =

[
0
0

]

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3



Discussion 8 @ 2024-11-04 23:05:00Z

(a) Gradient with respect to W1:

dL

dW1
=

(
W T

2

dL

da

)
⊙ ReLU′(h) · xT

Compute dL
da :

dL

da
= W T

2

dL

dout
=

[
0 0
0 0

][
0.1
0.2

]
=

[
0
0

]

Compute ReLU′(h):

h = W1x+ b1 =

[
0
0

]
, ReLU′(h) =

[
0
0

]

Therefore:
dL

dW1
=

[
0
0

]
⊙

[
0
0

]
·
[
1 2

]
=

[
0 0
0 0

]

(b) Gradient with respect to b1:

dL

db1
=

(
W T

2

dL

dout

)
⊙ ReLU′(h) =

[
0
0

]
⊙

[
0
0

]
=

[
0
0

]

0.4 Part A.iv
Describe why would this be a problem? (Hint: think about the next forward and backward pass. Your
answer should contain little-to-no complicated math and should be at most a few sentences.)

Solution:

Solution: Implications of Zero Initialization

Initializing all weights and biases to zero causes the following issues:

• No Weight Updates: Since the gradients with respect to W1 and W2 are zero, these weights
do not get updated during training.

• Constant Output Independent of Input: The network’s output remains a constant vector
determined solely by b2, regardless of the input x.

• Lack of Learning Capability: The network cannot learn meaningful patterns or dependencies

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4



Discussion 8 @ 2024-11-04 23:05:00Z

from the data, rendering it ineffective for tasks like classification or regression.

As a result, the network remains static after initialization, unable to adapt or improve based on the
training data.

0.5 B
(a) Now, suppose that for each weight matrix and bias vector, all elements are set to the same constant

W1 =

[
2 2
2 2

]
, b1 =

[
−2
−2

]
, W2 =

[
1 1
1 1

]
, and b2 =

[
1
1

]
.

The input x =

[
1
2

]
. What is the output of the neural network?

Solution:

Solution: Implications of Zero Initialization

Step 1: Compute the output of the first layer:

z1 = W1x+ b1 =

[
2 2
2 2

][
1
2

]
+

[
−2
−2

]

=

[
2 · 1 + 2 · 2
2 · 1 + 2 · 2

]
+

[
−2
−2

]
=

[
6
6

]
+

[
−2
−2

]
=

[
4
4

]
Step 2: Apply the ReLU activation function, which does not change the values since they are
positive:

a1 = ReLU(z1) =

[
4
4

]
Step 3: Compute the output of the second layer:

z2 = W2a1 + b2 =

[
1 1
1 1

][
4
4

]
+

[
1
1

]

=

[
1 · 4 + 1 · 4
1 · 4 + 1 · 4

]
+

[
1
1

]
=

[
8
8

]
+

[
1
1

]
=

[
9
9

]
The output of the neural network is:

Output =

[
9
9

]

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5



Discussion 8 @ 2024-11-04 23:05:00Z

(b) Suppose that the final gradient ∂L
∂dout

=

[
0.1
0.2

]
. What are the gradients over the final Linear layer’s

weights and biases ∂L
∂W2

and ∂L
∂b2

?

Solution:

Solution: Implications of Zero Initialization

Step 1: Compute ∂L
∂b2

, which is just the final gradient:

∂L

∂b2
=

∂L

∂dout
=

[
0.1
0.2

]

Step 2: Compute ∂L
∂W2

:

∂L

∂W2
=

∂L

∂dout
· aT1 =

[
0.1
0.2

] [
4 4

]

=

[
0.1 · 4 0.1 · 4
0.2 · 4 0.2 · 4

]
=

[
0.4 0.4
0.8 0.8

]

(c) (3 Points) What are the gradients over the first Linear layer’s weights and biases ∂L
∂W1

and ∂L
∂b1

?

Solution:

Solution: Implications of Zero Initialization

Step 1: Compute the gradient with respect to a1 using W2 and ∂L
∂dout

:

∂L

∂a1
= W T

2 · ∂L

∂dout
=

[
1 1
1 1

]T [
0.1
0.2

]
=

[
0.3
0.3

]

Step 2: Compute ∂L
∂z1

:

∂L

∂z1
=

∂L

∂a1
⊙ ReLU′(z1) =

[
0.3
0.3

]
⊙

[
1
1

]
=

[
0.3
0.3

]

Step 3: Compute ∂L
∂b1

:

∂L

∂b1
=

∂L

∂z1
=

[
0.3
0.3

]

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6



Discussion 8 @ 2024-11-04 23:05:00Z

Step 4: Compute ∂L
∂W1

:

∂L

∂W1
=

∂L

∂z1
· xT =

[
0.3
0.3

] [
1 2

]
=

[
0.3 0.6
0.3 0.6

]

(d) Describe why this would be a problem? Hint: think about the next forward and backward pass. How
do the results of the previous question impact the expressiveness of the model? Your answer should
contain little-to-no complicated math and should be at most a few sentences.

Solution:

Solution: Implications of Zero Initialization

In this case, all intermediate activations for each layer are constant (though the output of each
layer can be a different constant). In the last layer, the bias for the last layer can get updated
and the weight matrix is:

∇WL =
∂y

∂W

∂L

∂y
=

∂L

∂y
xT

In this case, ∂L
∂y is an arbitrary vector, but the elements of x are all the same constant. Thus,

the resulting gradient is a matrix where each row is a (possibly different) constant. After W is
updated using gradient descent, its rows are likewise each a possibly different constant.
What about the gradient with respect to x, which gets passed to the preceding layer?

∇xL =
∂y

∂x

∂L

∂y
= W T ∂L

∂y

In this case, W either is all constant or has constant rows. However, in either case, ∇xL
evaluates to all constants.
For the second-to-last layer, the downstream derivative it receives ∂L

∂out is thus always constant.
Since it also received a constant input, that means its weight matrix, bias vector, and input
gradients are thus also going to be filled with constants (albeit in maybe a different constant
from before). Thus, the weight and bias terms themselves will stay constant after gradient
descent.
The only case where this isn’t true is the very first layer, since it receives the actual input of the
neural net xinput (which might NOT be constant). However, since it received constant ∂L

∂out , the
gradient of its weight matrix will be:

∂L

∂out
xTinput

which is a matrix with each column having a different value. Thus, W for that layer will
likewise have constant columns. For the next forward pass, its outputs are thus going to be
constant. Because of this, we can repeat this same argument for all subsequent gradient steps
as well.
The final result is that each hidden layer’s resulting activations will always be the same – that is,
their neurons all work the same. Thus, the overall neural network behaves just like one wherein
each hidden layer has only one neuron, thereby lowering its expressivity. It will still try to learn
the task, but likely poorly.

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7



Discussion 8 @ 2024-11-04 23:05:00Z

2. Multiple Choice

0.6 Q1
A model for classifying different objects is getting a high training set error. Which of the following is the
most likely way to improve the classifier?

○ A: Use more training data.

○ B: Increase the regularization being used.

○ C: Use a bigger network.

○ D: Use a smaller network.

Solution:

Solution: Addressing High Training Error

The model is experiencing high training set error, which indicates that it is underfitting the data.
Underfitting occurs when the model is too simple to capture the underlying patterns in the data. To
address underfitting, we need to increase the model’s capacity to learn more complex representations.

(a) A: Use more training data.
Incorrect. The primary issue here is that the model itself lacks sufficient capacity to learn
from the data. While more data can help, the most direct approach to reduce training error is
to increase the model’s complexity.

(b) B: Increase the regularization being used.
Incorrect. Increasing regularization (such as L1 or L2 regularization) typically helps prevent
overfitting by penalizing large weights. In this case, the model is underfitting, so increasing
regularization would likely exacerbate the problem by further restricting the model’s capacity.

(c) C: Use a bigger network.
Correct. A bigger network, with more layers or more neurons per layer, increases the model’s
capacity to learn complex patterns in the data. This directly addresses underfitting by allowing
the model to better fit the training data, thereby reducing training error.

(d) D: Use a smaller network.
Incorrect. Using a smaller network would decrease the model’s capacity, which is counter-
productive in a situation where the model is already underfitting. This would likely increase
the training error further.

0.7 Q2
How many model parameters are in a Convolution2D layer that uses a 4x4 filter with 5 output channels and
a bias, and takes as input a three-channel color RGB image with height=32 pixels, width=32 pixels?

○ A: 16

○ B: 245

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8



Discussion 8 @ 2024-11-04 23:05:00Z

○ C: 80
○ D: 240
○ E: 21
○ F: 85

Solution:

Solution: Calculating Convolutional Layer Parameters

To calculate the number of parameters in a Convolution2D layer, consider both the weights of the
filters and the biases.
Given:

• Filter size: 4× 4

• Number of output channels: 5

• Number of input channels: 3 (RGB)

• Bias: 1 per output channel

Calculation:

Number of weights = filter height × filter width × input channels × output channels

= 4× 4× 3× 5 = 240

Number of biases = output channels = 5

Total parameters = 240 + 5 = 245

0.8 Q3
Which of the following can lead to vanishing gradients?

○ A: Sigmoid activations.
○ B: Very deep neural network with skip connections.
○ C: Batch normalization layers.
○ D: Leaky ReLU activations.

Solution:

Solution: Factors Leading to Vanishing Gradients

Vanishing gradients occur when gradients become too small during backpropagation, hindering ef-
fective learning, especially in deep networks.
Explanation of Answer Choices:

(a) A: Sigmoid activations.
Correct. Sigmoid activation functions squash input values into the range (0, 1). For inputs

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9



Discussion 8 @ 2024-11-04 23:05:00Z

with large magnitudes, the sigmoid function saturates, leading to very small gradients (deriva-
tives close to zero). This causes the gradients to diminish as they propagate back through the
network, resulting in vanishing gradients.

(b) B: Very deep neural network with skip connections.
Incorrect. Skip connections (as used in architectures like ResNet) are designed to alleviate the
vanishing gradient problem by providing alternative pathways for gradients to flow through the
network. This facilitates the training of very deep networks.

(c) C: Batch normalization layers.
Incorrect. Batch normalization helps stabilize and accelerate training by normalizing layer
inputs, which can mitigate issues like vanishing and exploding gradients. It does not contribute
to vanishing gradients; instead, it often helps prevent them.

(d) D: Leaky ReLU activations.
Incorrect. Leaky ReLU activations address the "dying ReLU" problem by allowing a small,
non-zero gradient when the unit is not active. They help in maintaining gradient flow and do
not lead to vanishing gradients.

0.9 Q4
What is the primary motivation for adding masks in “masked self-attention” in the Transformer decoder?

○ A: To better-condition the intermediate activation values to avoid the vanishing/exploding gradient
problem.

○ B: To avoid the decoder from “cheating” and using information from future token positions.
○ C: To avoid the decoder from “cheating” and using information from other batch samples.
○ D: To improve representation power by adding more model parameters.

Solution:

Solution: Purpose of Masks in Masked Self-Attention

Masks in masked self-attention are crucial for maintaining the autoregressive property of the Trans-
former decoder, ensuring that predictions for a given position depend only on the known outputs at
positions before it.
Explanation of Answer Choices:

(a) A: To better-condition the intermediate activation values to avoid the vanishing/explod-
ing gradient problem.
Incorrect. While conditioning intermediate activations is important, masks are not primarily
used for preventing vanishing or exploding gradients. Instead, techniques like proper initial-
ization and normalization address gradient issues.

(b) B: To avoid the decoder from “cheating” and using information from future token posi-
tions.
Correct. In masked self-attention, masks are applied to prevent the model from accessing
future tokens during training. This ensures that the prediction for a particular position can
only depend on the tokens before it, maintaining the causality required for tasks like language

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 10



Discussion 8 @ 2024-11-04 23:05:00Z

modeling and translation.

(c) C: To avoid the decoder from “cheating” and using information from other batch sam-
ples.
Incorrect. Masks in self-attention are not related to interactions between different batch sam-
ples. Batch interactions are generally managed by batching mechanisms, not by attention
masks.

(d) D: To improve representation power by adding more model parameters.
Incorrect. Masks do not add additional model parameters. Their primary role is to control
the flow of information during attention computation, not to enhance representation capacity
through additional parameters.

0.10 Q5

In the Transformer self-attention block, when computing the attention weights A = softmax

(
QKT

√
dk

)
,

what is the primary motivation for dividing by
√
dk, where dk is the embedding dimensionality?

○ A: To better-condition the intermediate activation values to avoid the vanishing/exploding gradient
problem.

○ B: To avoid dividing by 0.
○ C: To add additional regularization to avoid overfitting.
○ D: To improve representation power by adding more model parameters.

Solution:

Solution: Scaling in Attention Mechanism

The scaling factor
√
dk is introduced to counteract the effect of the dot product’s magnitude as the

dimensionality increases.
Explanation of Answer Choices:

(a) A: To better-condition the intermediate activation values to avoid the vanishing/exploding
gradient problem.
Correct. When computing the dot product QKT , the variance of the result increases with
the dimensionality dk. Without scaling, for large dk, the softmax function can push values
into regions with very small gradients, exacerbating the vanishing gradient problem. Dividing
by

√
dk normalizes the dot product, ensuring that the softmax input remains in a range that

maintains meaningful gradient magnitudes.

(b) B: To avoid dividing by 0.
Incorrect. The dimensionality dk is a positive integer, so

√
dk is never zero. This is not the

reason for scaling.

(c) C: To add additional regularization to avoid overfitting.
Incorrect. The scaling factor does not serve as a regularizer. Regularization techniques in-
volve adding penalties to the loss function or modifying the network architecture to prevent

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 11



Discussion 8 @ 2024-11-04 23:05:00Z

overfitting.

(d) D: To improve representation power by adding more model parameters.
Incorrect. Scaling by

√
dk does not introduce new parameters or enhance representation

power. It is purely a normalization technique to stabilize training.

Discussion 8, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 12


	Part A.i
	Part A.ii
	Part A.iii
	Part A.iv
	B
	Q1
	Q2
	Q3
	Q4
	Q5

