
CS 182/282A Designing, Visualizing and Understanding Deep Neural Networks
Spring 2022 Marvin Zhang Discussion 7

This discussion covers Transformers and Pretraining.

1 Transformers
At a high-level, transformers consist of the Transformer Encoder and Transformer Decoders.

Figure 1: Overview of Transformer architecture

Both operate similarly, except the Transformer Decoder takes xtarget as input, but Transformer Encoder
takes in xsource as input. In addition, there are several differences in cross-attention and self-attention
operations. In particular, transformers are novel in that they add,

• Positional Encoding: Addresses lack of sequence information

• Multi-headed Attention: Allows querying multiple positions at each layer

• Non-linearities

CS 182/282A, Spring 2022, Discussion 7 1



• Masked Decoding: Prevent attention lookups into the future

1.1 Notations
To ensure a level of clarity, we will let B be the batch size, Lsource represent the source sequence length,
Ltarget be the target sequence length, D represent the model hidden dimension and H represent the number
of attention heads.

In particular, transformers receive two sequences as input. The first is xsource ∈ ZB×Lsource and the second
is xtarget ∈ ZB×Ltarget . These are integer tensors, and each integer represents a word or token.

1.2 Transformer Encoders
Input & Positional Embedding The source tensor is embedded into the model hidden dimension, and
produces a tensor Xsource ∈ RB×Lsource×D. We then add a positional encoding that differs for each sequence
position in order to enable the model to differentiate the positions in the sequence. In general, we need this
information since position of words in a sentence carries information.

Encoder Attention The Encoder Attention is self-attention. Specifically, in Transformer networks, we
use the Scaled QKV Attention (not covered explicitly in lecture). In other words, we would like to build
a representation of a single sequence such that every position in the sequence has information about every
other position in the sequence. In particular, to enable this, we will use the Query-Key-Values (QKV)
Attention. Our queries, keys and values will be tensors in Xsource ∈ RB×Lsource×D and weight matrices will
be WQ,WK ,WV ∈ RD×D. Ultimately, we will retrieve,

Q = XsourceWQ

K = XsourceWK

V = XsourceWV

Using Q,K, V , we will compute the attention scores (tensor in RB×Lsource×Lsource). For each element in the

batch, each entry i, j in the matrix would be
q⊤i kj√

D
for scaled dot product attention. Alternatively, we can

compute, QK⊤
√
D

. To produce weights over each position in the sequence, we want each score to sum to one

over the keys K. To accomplish this, we take a softmax update over the last dimension of the attention
scores. Then, to produce the attention update, we multiply these attention weights by our values V ,

Cupdate = softmax

(
QK⊤
√
D

)
V

where Cupdate ∈ RB×Lsource×D

One of the key changes in Transformers is the multi-headed attention mechanism. To turn it into multi-
headed attention, we can take any such update matrices and reshape and permute the matrix from shape
B × Lsource ×D to B ×H × Lsource × D

H .

We finally consider padding. In general, we operate on a batch of B sequences, but these sequences may
not be the same length. We pad each sequence to Lsource. To prevent our model from paying attention
to padded positions, we add −∞ to attention scores prior to the Softmax of any position that should be
ignored.

Feedforward Layer The feedforward layer applies linear transformation to each position, apply a nonlin-
ear activation, then applies a second linear transformation.

CS 182/282A, Spring 2022, Discussion 7 2



1.3 Transformer Decoder
Masked Decoder Self-Attention Masked decoder self-attention is the same as encoder self-attention,
but with different masking. In particular, we would like every position to pay attention to all previous

positions, but not future positions. To achieve this, we set attention score to
q⊤i kj√

D
if i ≤ j and −∞

otherwise.

Encoder-Decoder Attention Encoder-Decoder attention operated similarly as well, except that we have
two sequences: (1) generate queries and (2) generate keys-values. Hence, we let Q = XtargetWQ,K =
XsourceWK , V = XsourceWV , whereXsource is the output of the transformer encoder on the source sequences.

Problem: Machine Translation

1. What is the reason for positional encoding? How is it typically implemented?

2. What is the advantage of multi-head attention? Give some examples of structures that can be
found using multi-head attention

3. For input sequences of length M and output sequences of length N , what are the complexities of
(1) Encoder Self-Attention (2) Decoder-Encoder Attention (3) Decoder Self-Attention. Further
let k be the hidden dimension of the network

4. Do activation of the encoder depend on decoder activation? How much additional computation
is needed to translate a source sequence into a different target language, in terms of M and N?

Solution: Machine Translation

1. Position encoding is used to ensure that word position is known. Because attention is applied
symmetrically to all input vectors from the layer below, there is no way for the network to know
which positions were filtered through to the output of the attention block. Position encoding also
allows the network to compare words (nearby position encodings have high inner product) and
find nearby words. We can either use learned position encodings or precomputed sinusoids such
that each dimension of the position encoding corresponds to a different sinusoidal frequency.

2. Multi-Head attention allows for a single attention module to attend to multiple parts of an
input sequence. This is useful when the output is dependent on multiple inputs (such as in the
case of the tense of a verb in translation). Attention heads find features like start of sentence
and paragraph, subject/object relations, pronouns, etc.

3. (1) O(M2k) (2) O(MNk) (3) O(N2k)

4. No. The encoder activations do not depend on the decoder activations. Thus, you only need
O(MN +N2) additional computation to decode into a new sequence.

1.4 Why Transformers
In general, transformers are good for long-range connections, are easy to parallelize and transformers can be
made much deeper than RNNs. On the other hand, attention computations are complex to implement and
computations take O(n2) time.

However, in practice, it turns out the benefits vastly outweigh the downsides, and transformers work better
than RNNs and LSTMs in many cases.

CS 182/282A, Spring 2022, Discussion 7 3



2 Unsupervised Pretraining
We will review several techniques for unsupervised pretraining with transformers, particularly in natural
language processing (NLP). The general idea is to use unlabelled data, which is often easily accessible (for
example text data on the internet, in books, other publications, etc...) in order to learn representations that
can be useful for downstream tasks, such that not as much task-specific data is needed for good performance
on that task.

To illustrate why we might expect this to be helpful, we can imagine we want to translate English sentences
to French, and are given a labelled dataset of English/French sentence pairs. You can imagine this task would
be really difficult if you had no prior knowledge of English, while being much more manageable if you came
in with a general understanding of the English language already, which can be learned using unsupervised
data (for example, all the English text we see on the internet).

2.1 Pretrained Language Models
At a high level, one simple way we can embed words in a context-dependent manner is to take a language
model (for example an LSTM) trained on some task, and to run a sentence through it, taking the hidden
state of the model as the embedding for each word. Since these language models presumably had to use
the context in order to solve the task they were trained on, using the hidden state as an embedding should
provide context-dependent representations of words.

Figure 2: ELMo takes the hidden states in a bi-directional LSTM to generate word embeddings. The LSTMs
are both trained via sequence prediction.

ELMo: We note that if we simply ran an LSTM forward through a sentence to generate the embeddings
of words, the embedding of each word would only depend on those that came before it, rather than the full
context of the word. ELMo addresses this issue by simply training a bidirectional LSTM (both trained to
predict the next/previous word), and concatenating hidden states of both directions together to form an
embedding. ELMo has been largely replaced by other models in current NLP research, and the following
models are more represenative of what is currently used in NLP today.

GPT: GPT (and its successors GPT-2 and GPT-3) are high-capacity transformer-based language models
trained on very large amounts of unlabeled text (e.g. text from the internet). Because they are forward
generative language models, they model architectures consists only of a transformer decoder. While concep-
tually simple, these models can be incredibly powerful for generating text data, with the most recent version
GPT-3 being able to generate text that is almost indistinguishable from text written by a human. The repre-

CS 182/282A, Spring 2022, Discussion 7 4



sentations learned by GPT can also be effectively used for downstream tasks, but they may be a suboptimal
from some tasks because GPT is a forward language model, so its representations only incorporate context
from past context, not the entire sequence of text.

Figure 3: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same
architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are
used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned.
[CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g.
separating ques- tions/answers).

BERT: One can imagine incorporating bidirectional context with a transformer-based language model in
similar manner as ELMo, where we can learn both a forward and backward language model and concatenate
their embeddings. However, while such an embedding would capture bidirectional context, the individual
tasks of forward and backward language modeling are inherently unidirectional, so simply concatenating
their embeddings may not learn representations that capture bidirectional relationships well. Instead, BERT
relies on a single transformer encoder to generate embeddings that incorporate bidirectional context, using
an inherently bidirectional pretraining task.

While the previous transformers we saw for sequence modeling relied on masked self-attention to avoid
peeking into the future, our goal here is to digest the entire context of a word to produce an embedding,
which eliminates the need for the mask. However, this presents a complication if we were to try train
embeddings to predict the next word like ELMo or GPT. The issue here is that if we did unmasked self-
attention, we can already directly see the next word in the input, making prediction completely trivial and
preventing useful representations from being learned.

The solution is to simply change the unsupervised task. Instead of predicting the next word in sentence, we
instead randomly mask out certain words in the input, and then train the embedding to predict the masked
out words. In this way, our model is forced to learn context dependent word-level representations to predict
the missing words.

In addition to learning word-level representations by predicting masked out words, BERT also tries to learn
sentence-level representations. To train this, BERT takes in pairs of sentences, half of which are consecutive
and half of which are paired randomly. It trains a binary classifier to predict whether the two sentences are
consecutive or not.

This pretraining procedure gives BERT the ability to produce powerful represenations for downstream tasks
that require language understanding. Such tasks include sentiment analysis, textual entailment, and question
answering. Depending on the downstream task, we can either use the sentence level representation outputted
by BERT or the word-level representations in the downstream task. We can use BERT for downstream tasks
both by simply finetuning the entire model on the downstream tasks, or taking combinations of the hidden

CS 182/282A, Spring 2022, Discussion 7 5



states as fixed representations.

Figure 4: Example of how the BERT-style masked language modeling pretraining task is adapted to T5.

T5: T5 was the result of an extensive empirical analysis on the best practices for pre-training a large trans-
former model for transfer learning on downstream tasks. They investigated various design decisions including
model architectures, pre-training objectives, and pre-training datasets. In the end, they concluded the best
performance was offered by the BERT-style masked language modeling pre-training objective, but changing
the architecture to be a standard encoder-decoder transformer, instead of using only a transformer encoder
like BERT. They do this by proposing to reframe all NLP tasks (including pre-training and downstream
tasks) into a unified text-to-text (sequence-to-sequence) format. For example, for the masked language mod-
eling task, the input to the encoder is the same as it would be for BERT, but now the decoder is trained to
autoregressively predict a sequence that contains the predictions for the missing text.

Through this architecture choice, T5 is more flexible and easily adapted for sequence-to-sequence downstream
tasks, such as machine translation. Also, the more general and flexible architecture of T5 allows it to be
more readily used for multi-task learning, where a single model can be fine-tuned on multiple downstream
tasks, which can potentially lead to better performance than training on any single task alone. At the time
of its development, T5 achieved state-of-the-art performance on many popular NLP benchmarks.

Problem: Pretrained Language Models

What are the pros and cons of each of the discussed pretrained language models? In which situations
is each type of model most useful for?

Solution: Pretrained Language Models

ELMo, BERT, and T5 are most useful for downstream tasks that require bidirectional context for
understanding the content of some text. BERT and T5 are typically even better suited for these
tasks because its pre-training task is inherently bidirectional, unlike ELMo. BERT and T5 also
use transformers instead of LSTMs, which can be helpful for modeling long-term dependencies and
parallelization of training on large datasets. T5 can be more broadly applicable than BERT due to
its more flexible text-to-text framework. GPT models are less suitable for downstream tasks that
require text understanding because its representations only incorporate unidirectional context, but
they are better suited for text generation because they were explicitly trained for this purpose, and
text generation requires unidirectional contexts that models like BERT and T5 were not pre-trained
on.

CS 182/282A, Spring 2022, Discussion 7 6


	Transformers
	Notations
	Transformer Encoders
	Transformer Decoder
	Why Transformers

	Unsupervised Pretraining
	Pretrained Language Models


