
Discussion 06 @ 2024-10-14 13:23:08-07:00

Data C182 Designing, Visualizing & Understanding DNN
Fall 2024 Eric Kim, Naveen Ashish Discussion 06

This discussion covers self-attention mechanism, multi-head attention, encoder architecture,
attention vs CNN, and Cross attention.

1. Attention Mechanisms
For many NLP and visual tasks we train our deep models on, features appear on the input text/visual data
often contributes unevenly to the output task. For example, in a translation task, not the entirety of the input
sentence will be useful (and may even be confusing) for the model to generate a certain output word, or not
the entirety of the image contributes to a certain sentence generated in the caption.

While some RNN architectures we previously covered possess the capability to maintain a memory of the
previous inputs/outputs, to compute output and to modify the memory accordingly, these memory states
need to encompass information of many previous states, which can be difficult especially when performing
tasks with long-term dependencies.

Attention mechanisms were developed to improve the network’s capability of orienting perception onto
parts of the data, and to allow random access to the memory of processing previous inputs. In the context of
RNNs, attention mechanisms allow networks to not only utilize the current hidden state, but also the hidden
states of the network computed in previous time steps as shown in the figure below.

Figure 1: Attention mechanism

0.1 Self-Attention in Transformer Networks
Self attention is an attention mechanism introduced in the Transformer architecture. The first step of the
attention is to compute Q, K, V using different transformations from the original input embedding as
shown in the figure below.

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Discussion 06 @ 2024-10-14 13:23:08-07:00

Figure 2: Computing K, Q, V from input embeddings in a Transformer Network.

Then, using Q and K, we can compute a dot product as the ‘score’ of K for Q as shown in the figure below.
Intuitively, Q is the querying term that you would like to find. Its relations for each corresponding K and
V pairs (key-value) pairs, can be computed using the key. Note that this dot product is computed across
various time steps by matrix multiplication. So we get a score for each K for each Q. We then use a Softmax
function to get our attention weights.

Figure 3: Computing Attention Scores from K, Q, V

Finally, using these weights, we can compute our weighted sum by multiplying the weights with the values.
You may find the follow figure helpful.

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

Discussion 06 @ 2024-10-14 13:23:08-07:00

Figure 4: Attention operation

(a)

Problem: Generalized Attention in Matrix Form

Consider a form of attention that matches query q to keys k1, . . . , kt in order to attend over
associated values v1, . . . , vt.
If we have multiple queries q1, . . . , qt, how can we write this version of attention in matrix
notation?

Solution:

Solution: Generalized Attention in Matrix Form

Stack queries into a matrix Q, keys into K and values V . Then,

a(Q,K, V) = Softmax(QK⊤)V

where Softmax is applied row-wise. Note that here, Q, K, V are all matrices of shape [t, d],
where t is the number of tokens in the sequence, and d is the hidden dimension.

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Discussion 06 @ 2024-10-14 13:23:08-07:00

Problem: Justifying Scaled Self-Attention

Given a well-initialized neural network, activations should be on the order of O(1).
Consequently, entries in the query (q), key (k), and value (v) vectors are also O(1). A well-
initialized network avoids collapsing its representations into a low-dimensional subspace. Thus,
the entries of q, k, and v can be considered approximately independent random variables,
perhaps drawn from normal distributions.
We estimate the order of magnitude of V ar[q · k], assuming entries of q and k are independent
samples from a normal distribution N (µ, σ), where µ ∈ Rd and σ ∈ R+

(b) i. Asymptotically, how does V ar(q⊤k) scale with d? Use big-O notation. Why might this
be problematic?

ii. Suppose we scale the dot product by 1
s , i.e. V ar(q⊤k/s). What value of s should we

choose to address the issue from 3.?

iii. (optional) Calculate the exact value of E[q⊤k] in terms of µ, σ, d

iv. (optional) Calculate the exact value of V ar(q⊤k) in terms of µ, σ, d

Solution:

Solution: Justifying Scaled Self-Attention

i. Since qi and ki are independent, each term qiki has the same mean and variance. Because
the dot product q · k is a sum of d such independent terms, the variance is additive:

V ar[q · k] = V ar[
∑d

i=1 qiki] =
∑d

i=1 V ar[qiki] = d× V ar[q1k1].

If q1 and k1 are independent and normally distributed with mean µ and standard deviation
σ, then V ar[q1k1] = σ2(µ2 + σ2). Assuming µ and σ are O(1), V ar[q1k1] is also O(1).
Therefore, V ar[q · k] = d×O(1) = O(d).

Since V ar(q⊤k) = O(d), as d grows larger, the variance increases. Given that this
is immediately the input to a softmax, which is known to have issues with vanishing
gradients given large inputs, this is problematic.

ii. With the scaling term, the variance becomes 1
s2
(2dσ2µ⊤µ+dσ4). We would like s =

√
d

for the variance to no longer be linear in d.

iii. While these derivations may be somewhat out of scope for Data C182 (Fall 2024), we do
want you to understand the argument why V ar() being a function of d is bad, and how
dividing by

√
d fixes it.

E[q⊤k] = E

 d∑
i=1

qiki


=

d∑
i=1

E[qiki]

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

Discussion 06 @ 2024-10-14 13:23:08-07:00

=

d∑
i=1

µ2
i

= µ⊤µ

iv. First, notice that if random variables are uncorrelated, then, we have

V ar

 n∑
i=1

Xi

 =
n∑

i=1

V ar(Xi)

Then,

V ar(q⊤k) = E[(q⊤k)2]− E[q⊤k]2

= E[q⊤kk⊤q]− (µ⊤µ)2

= E[Tr(qq⊤kk⊤)]− (µ⊤µ)2

= Tr(E[qq⊤]E[kk⊤])− (µ⊤µ)2

= Tr
(
(E[q]E[q⊤] + σ2I)(E[k]E[k⊤] + σ2I)

)
− (µ⊤µ)2

= Tr
(
(µµ⊤ + σ2I)(µµ⊤ + σ2I)

)
− (µ⊤µ)2

= Tr(µµ⊤µµ⊤) + 2σ2Tr(µµ⊤) + Tr(σ4I)− (µ⊤µ)2

= µ⊤µµ⊤µ+ 2σ2µ⊤µ+ dσ4 − (µ⊤µ)2

= 2dσ2µ⊤µ+ dσ4

Problem: Non-local Means Interpretation of Attention

Given a dataset of (x, y)i, a non-parametric method for estimating the value for arbitrary x is
via “averaging” the y of the nearest data points to x.

y =
∑
i

K(x, xi)∑
j K(x, xj)

yi

Where K(x, xi) is the “similarity” between x and xi, and y is computed as the weighted
average. How does this relate to transformer, specifically, the q, k, v matrix?

Solution:

Solution: Justifying Scaled Self-Attention

We can rewrite the attention formulation as

Attention(Q,K, V) = softmax(
QK⊤
√
dk

)V

outi = aijvj

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Discussion 06 @ 2024-10-14 13:23:08-07:00

aij = softmax(
qik

⊤
j√
dk

) =
exp

(
qik

⊤
j /

√
dk

)
∑

r exp
(
qi, k⊤r /

√
dk

)

Here, exp
(
qik

⊤
j

)
captures the “similarity” between query element i and key element j.

0.2 Multi-Headed Attention
The multi-head self-attention module is a key component in Transformer. Rather than only computing
the attention once, the multi-head mechanism splits the inputs into smaller chunks and then computes
the scaled dot-product attention over each subspace in parallel. The independent attention outputs are
simply concatenated and linearly transformed into expected dimensions.

X0 = X[:, : dk]

X1 = X[:, dk : 2dk]

X2 = X[:, 2dk : 3dk]

......

headi = Attention(XiW
q
i ,XiW

k
i ,XiW

v
i)

MHA(X,Wq,Wk,Wv) = Concat[head1; . . . ; headh]Wo

Here Xi is the i-th split of size dk along the embed dimension where dk = d
h .

Figure 5: Multi-headed attention

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

Discussion 06 @ 2024-10-14 13:23:08-07:00

Problem: Properties of Multi-head attention (MHA)

(c) i. We want to change single-head attention to multi-head attention. The original single-
head attention has hidden dimension of d, dk keys, dq queries and dv values. What is the
relationship between dk and dq?

ii. Suppose the sequential input that the user feeds in is of length n What is the total
computational cost of self attention operation? Only consider matrix multiplications.
Assume the computation is the product of the number of elements in the two matrices.
You may find it helpful to walk through the following diagram.

Figure 6: Self attention

iii. Now we want to maintain the same number of parameters, and use h heads. How many
keys, queries and values will there be? What is the computational advantage of using
MultiheadAttention?

Solution:

Problem: Properties of Multi-head attention

i. Due to the multiplication between keys and queries, they need to match in their number.
dk = dq.

ii. The computation is O(nd(̇2dq + dv)) +O(dqn
2) +O(n2dv). The computational bottle

neck is n2, which is quadratic to the number of elements in the input, which limits the
capability of the attention to scale to very long sequences. In theory, you can design an
MHA block where dv ̸= dq. But in practice, we usually set dv = dq so that it results in
(1) a simpler architecture, and (2) we can enable certain computation optimizations, see
pytorch’s torch.nn.MultiheadAttention docstring.

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

https://github.com/pytorch/pytorch/blob/711dacf9845cbc9ea8b3b0fa257309930106712f/torch/nn/modules/activation.py#L999

Discussion 06 @ 2024-10-14 13:23:08-07:00

Figure 7: Self attention

iii. We effectively reduce the size dk → dk
h , and dq → dq

h , dv → dv
h . Assume matmul

between two matrices with shape [N,D], [D,M] is O(NDM).

The computational cost of attention is dominated by the attention score calculation
and weighted value aggregation. Given sequence length n and key, query, and value
dimensions dk, dq, dv, the cost is O(ndkn) + O(n2dv). Assuming n ≥ d and dq = dk,
this simplifies to O(n2(dk + dv)). Dividing and multiplying by a constant h doesn’t
change this asymptotic complexity. Therefore there is no computational advantage to
using multi-head attention in terms of computational complexity.

However, multi-head attention allows for parallelization of the attention computation
across the heads, which can be beneficial for running on GPUs. Some research have
also shown that the heads can specialize in different aspects of the input, which can
improve the model’s performance. For example see Analyzing Multi-Head Self-Attention:
Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned.

A similar phenomenon can be observed in mixture-of-experts models, where different
experts specialize in different aspects of the input data. See for example St-moe:
Designing stable and transferable sparse expert models, Table 13: We find experts that
specialize in punctuation, conjunctions and articles, verbs, visual descriptions, proper
names, counting and numbers.

2. Encoder Architecture
Among the famous transformer-based architectures, encoder-only transformers are popular for image classification
tasks. Below are from the famous BERT and ViT paper

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

Discussion 06 @ 2024-10-14 13:23:08-07:00

Figure 8: Encoder: BERT

Figure 9: Encoder: ViT

Encoder Architecture

3. (a) Explain how classification works for encoder-only architectures

(b) How does transformer-based encoder compare to CNN?

Solution:

Encoder Architecture

(a) The transformers, by default are sequence to sequence networks. As there is no decoder layer
in ViT, then the length of input sequence (number of patches) equals the length of output
sequence. So If the goal is classification, there is two choices:

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9

Discussion 06 @ 2024-10-14 13:23:08-07:00

i. Either apply a fully connected layer on top of the transformer (which is not a good
idea because then we have to fix the number of patches–which translates to input image
resolution)

ii. Or apply the classification layer on one items of the output sequence, but which one?! The
best answer here is none of them! We don’t want to be biased toward any of the patches.
One idea here is to add a dummy input, call it class token and apply the classification
layer on the corresponding output item!
Since then, this method has been obsoleted by better methods. One method is Global
Average Pooling (GAP), which just takes the average of all the output vectors, then apply
the classification layer. Another method is Multihead Attention Pooling (MAP), which
is essentially a small cross-attention module. We will implement a ViT using MAP in
homework 4.

(b) CNN models are traditionally known for their compact size and efficient memory utilization,
making them suitable for resource-constrained environments. Due to their inductive bias,
they perform better than ViT using fewer number of training images. On the other hand,
Vision Transformers offer a powerful approach to capture global dependencies and contextual
understanding in images. The downside of vision transformer is that due to having less
inductive bias, they require bigger models and much larger datasets to train.

For instance, the original ViT paper used JFT-300M, a dataset with 300 million images, which
is 20x bigger than ImageNet. The authors of the ViT paper state that:

When trained on mid-sized datasets such as ImageNet without strong regularization, these
models yield modest accuracies of a few percentage points below ResNets of comparable
size. This seemingly discouraging outcome may be expected: Transformers lack some of the
inductive biases inherent to CNNs, such as translation equivariance and locality, and therefore
do not generalize well when trained on insufficient amounts of data. However, the picture
changes if the models are trained on larger datasets (14M-300M images). We find that large
scale training trumps inductive bias. Our Vision Transformer (ViT) attains excellent results
when pre-trained at sufficient scale and transferred to tasks with fewer datapoints.

4. Cross Attention
What is cross-attention, and how does it differ from self-attention?

In self-attention, we work with the same input sequence. In cross-attention, we mix or combine two different
input sequences. Note that in cross-attention, the two input sequences x1 and x2 can have different numbers
of elements. However, their embedding/hidden dimensions must match.

Cross attention is useful for fusing together different sources of information, for instance, combining text
and image data, or in autonomous driving, combining vehicle information with the roadgraph information.
In machine translation, one can also combine sentences of two different language with cross attention.

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 10

Discussion 06 @ 2024-10-14 13:23:08-07:00

Cross Attention

(a) i. Fill in the dimension in the diagram.

Figure 10: Cross Attention mechanism

Solution:

Cross Attention

Figure 11: Cross Attention mechanism

Discussion 06, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 11

	Self-Attention in Transformer Networks
	Multi-Headed Attention

