
Discussion 05 @ 2024-10-06 19:54:44Z

Data C182 Designing, Visualizing & Understanding DNN
Fall 2024 Eric Kim, Naveen Ashish Discussion 05

This discussion covers computer vision architectures and basic recurrent models.

1. Review of Vision Problems For most of the class thus far, when we discuss applying neural
networks in practice to vision applications, we have largely assumed an image classification task. That is,
given an image, we let the network output the probabilities of the true label belonging to a variety of classes.

However, there are more types of standard computer vision problems. At the high level, we can roughly
categorize the computer vision problems into three main categories (the 3R’s of vision): recognition, re-
construction and re-organization. Recognition is about attaching semantic category labels to objects and
scenes as well as to events and activities. Reorganization is about the partitioning of the image based on
semantic information. Reconstruction is about obtaining the 3D information of of the scene that generated
the images. Under these broad categories, we can further classify the problems into specific tasks.

Image Classification Given an image, we would like the network output the probabilities of the true label
belonging to a variety of classes. This type of problem was the main focus of the course so far.

Object Localization Determine a bounding box for the object in the image that determines the class. In
this type of problem, only one object is involved, and indeed, we know ahead of time that there is only one
object class of interest in the image. Often, the bounding box objective may be simultaneously trained with
the classification objective, resulting in a loss objective that is the sum of the two loss terms, the L2 and the
cross-entropy loss, respectively.

Object Detection Determine multiple objects in an image and their bounding boxes, with performance
measured by mean average precision (mAP). There may be many objects, and several instances of the same
object class (for e.g., several dogs) in the same picture. This means that, in contrast to image classification
where the network only has to identify one object, the network has to predict a varying number of bounding
boxes. In literature, object detection can be solved using R-CNNs (R-CNN, fast R-CNN, faster R-CNN,
mask R-CNN).

Semantic Segmentation Label every pixel in the image. Here, we can naively run a CNN classifier for
each pixel. However, better solutions, like UNet, exists in literature. Semantic segmentation means we do
not worry about distinguishing between different instances of a class, in contrast to the aptly-named instance
segmentation problem.

2. Image Classification: ResNet
Let’s start with one of the most famous successes of deep learning: ResNet. A standard image classification
convolutional neural net involves a bunch of convolutional layers, then a layer that converts from activa-
tions of shape (batch size, channels, height,width) to (batch size, some fixed dimension), followed by one
or more affine layers. The final output of the affine layer is usually a vector of dimensionality equal to your

Discussion 05, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

Discussion 05 @ 2024-10-06 19:54:44Z

number of classes that you’re trying to classify the image into: e.g., if you’re trying to classify hand-written
digits, you would need 10 categories. You can then train this model with the cross-entropy loss discussed in
lecture.

There are a few approaches for that intermediate conversion step: for example, you could use a flatten-
ing layer (which converts the intermediate activations from shape (batch size, channels, height,width) to
(batch size, channels × height × width). Alternatively, you can pool over each filter map (one per chan-
nel) to produce an output of shape (batch size, channels). Think about why you might want one of these
approaches over the other.

Regardless of the specific design choices, stacking up too many layers in your neural network can cause
empirically bad performance. This is kind of a problem though: we need sufficiently deep neural networks
to ensure they have enough expressivity, especially for more complex tasks that require the neural network
to learn a very complicated mapping (e.g., from images to 1000+ categories).

Problem: Issues with Very Deep Neural Networks

What problems would a very deep neural network encounter? For simplicity, you can consider a very
deep fully-connected network (i.e., just interwoven affine layers and ReLUs).

Solution:

Solution 4: Exploding or Vanishing Gradients

As discussed in lecture, the main issue with very deep neural networks is the exploding or vanishing
gradient problem. For a neural network with L layers, the backpropagation chain rule equation takes
the following form:

∂L
∂Wi

=
∂L

∂xL+1

∂xL+1

∂xL

∂xL
∂xL−1

∂xL−1

∂xL−2
...
∂xi+1

∂Wi

where xi is the input to the i-th layer (and xi+1 is its output). Recall that each of ∂xj+1

∂xj
Jacobians are

the corresponding layers’ weight matrices. Thus, the above expression involves multiplying together
a lot of matrices. If the elements in these matrices are too small or large, then the gradients with
respect to earlier layers will end up being very small (vanishing) or very large (exploding)*. This
is more of a problem for deeper networks (since earlier layers’ gradients will involve even more
matrices multiplied together).
Note that, in practice, vanishing gradients are usually the issue – there are ways to counteract ex-
ploding gradients, like by clipping its magnitude. In that case, if the magnitude of the gradient
||∇L||2 exceeds some threshold hyperparameter value c, then simply re-scale the gradient to have
that threshold length, e.g., use the following expression for gradient descent:

c

||∇L||2
∇L

* In linear algebra terms, if these matrices’ eigenvalues are all significantly above or below magnitude one, then that will
cause the gradients to explode or vanish respectively.

This is exactly the problem that ResNet set out to resolve. To do this, they introduce the concept of a residual
connection (also called a skip connection or residual layer). For a given intermediate layer (or sequence of

Discussion 05, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

Discussion 05 @ 2024-10-06 19:54:44Z

layers) F (·) and input to that layer x, rather than outputting F (x), the residual layer outputs:

F (x) + x

Where the above expression uses element-wise addition. F (·) can be whatever kind of standard neural
network layer you want it to be. The only restriction is that the input x and output F (x) must be the same
shape.

Problem: Residual Shapes

Why do the shapes need to be the same? If F (·) is one or more convolutional layers, how can we
enforce that this is the case?

Solution:

Solution 4: Residual Shapes

Since x and F (x) must be added together, they have to be the same shape. To enforce that a con-
volutional layer(s)’ output is the same as its input, you can either (1) zero-pad the input so that the
convolution doesn’t change its shape or (2) have one or more layers that lower the shape followed by
one or more transpose convolution layers that bring the shape back up to its original value.

By adding residual connections to all their layers, the authors of the ResNet paper were able to train models
significantly larger and deeper than all previous ones, achieving then state-of-the-art performance while suf-
fering no gradient issues. Such connections are still regularly used today, including in modern Transformer-
based vision or language models.

Problem: Why are Residual Layers Good?

What are some reasons why residual layers might aid in training very deep neural networks?

Solution:

Solution 4: Reasons why Residual Layers are Good

There are two usual reasons given for why ResNets help with training very deep networks.
Firstly: Suppose that a task can be easily learned with a small network (say, 3 layers). If you use a
much larger network (say, 100 layers), it should be expressive enough to learn that mapping, but it
may be a lot harder in practice. You might have seen this in homework 1, wherein the deeper neural
network ended up being harder to train than the shallow one.
However, residual layers can really easily learn that "simple" mapping: e.g., the first three layers of
the model can learn the same function as the smaller network, then all subsequent layers can learn
the identity mapping (make the F (·) just be zero mapping, so x+F (x) = x). It’s thus easier to learn
"simple" functions with ResNets.
Secondly: Consider the new Jacobian "through" the layer:

xi+1 = xi + F (xi) →
∂xi+1

∂xi
= I +

∂F

∂xi

Now, even if the values of ∂F
∂xi

are all close to zero, the resulting Jacobian of the residual layer will

Discussion 05, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Discussion 05 @ 2024-10-06 19:54:44Z

have values close to one, so even if you multiply a bunch of these Jacobians together, the gradients
do not tend to vanish. In other words, the residual connection allows gradients to "flow" through the
model better, circumventing the vanishing gradient problem.

3. Recurrent Neural Network The world is full of sequential information, from video to language
modeling to time series data. In particular, we would like to model these sequences using neural networks,
and solve some major types of tasks that we would like to solve with sequence models.

0.1 Types of Problems
• One-to-one problems take a single input x and produce a single output y. Problems like classification

(takes an image as input, and produces a class label as output) and semantic segmentation (image as
input, segmentation mask as output) fall under this category.

• One-to-many problems take a single input, and produce a sequence of output. Problems like image
captioning (takes a single image as input, and produces a caption (a sequence of words) as output) fall
under this category.

• Many-to-many problems take sequences of inputs and produce sequences of outputs. As shown
in fig. 1, there are two main subcategories of many-to-many problems. In the first case, an entire
input sequence is processed before producing an output sequence. An example of this is language
translation (sequence of words in one language to sequence of words in another). On the other hand,
some problems produce an output for each step in the sequence. An example would be controlling a
robot (wherein the neural network takes in a sequence of observations and, for each one, must produce
some robot action).

Figure 1: Types of problems we would like to solve using sequential models

0.2 Why the Recurrence?
As you read through this discussion worksheet, you don’t process each word entirely on its own, but instead
use your understanding from the previous words as well. Traditional neural networks do not have the
capability to use its reasoning about previous events to infer later ones. For example, if we would like to
classify what is happening at every frame in a movie, this can be framed as an image classification task
where the network is provided the current image. However, it is unclear how a traditional neural network
should incorporate knowledge from the previous frames in the film to inform later ones.

Discussion 05, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

Discussion 05 @ 2024-10-06 19:54:44Z

Recurrent neural networks (RNNs) address this issue, by using the idea of “recurrent connections." RNNs
are networks with loops in them that allow information from previous inputs to persist as the network
processes the future inputs. These recurrent connections allow information to propagate from "the past"
(earlier in the sequence) to the future (later in the sequence).

Figure 2: An example of a generic recurrent neural network. This shows how to "unroll" a network through time -
instead of thinking about sequence modeling as a single network with shared weights

In Figure 2, we illustrate the RNN computation as it is unrolled through time. Each i ∈ {0, . . . , t} represents
a new timestep in the network. By feeding in a state computed from earlier timesteps as an input together
with the current input, information can persist throughout the time as the network “remembers” the past
inputs it processed.

0.3 Vanilla RNN
In the following section, we will use the following notation. Denote the input sequence as xt ∈ Rk for
t ∈ {1, . . . , T}, and output of the network be yt ∈ Rm for t ∈ {1, . . . , T}. In the following example, we
construct a ”vanilla" many-to-many RNN, consisting of a node that updates the hidden state ht and produces
an output yt at each timestep with the following equations:

ht = tanh(Wh,hht−1 +Wx,hxt +Bh)

yt = Wh,yht +By

where ht is the time step of a hidden state (one can think of ht−1 as the previous hidden state), W·,· be the
set of weights (for example, Wx,h represents weight matrix that accepts an input vector and produce a new
hidden state), yt be the output at timestep t and Bh and By be the bias terms.

As for the shapes, if the hidden states ht are of size dh and inputs xt are of size dx, then Wh,h and Wx,h

are (dh, dh) and (dh, dx) respectively, while Bt is of size dh. For the output y, if it has shape dy, then Wh,y

(which maps the hidden state to an output) must be of size (dy, dh) and the bias is of size dy.

We can also represent it as the diagram below,

Discussion 05, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Discussion 05 @ 2024-10-06 19:54:44Z

Figure 3: A simple RNN cell. As we can see by the arrows, we only pass a single hidden state from time t− 1 to time
t

In this vanilla RNN, we update to a hidden state "ht" based on the previous hidden state ht−1 and input at
the current time xt, and produce an output which that is a simple affine function of the hidden state. To
compute the forward (and backward) passes of the network, we have to "unroll" the network, as shown in
Figure 2. This "unrolling" process creates something that resembles a very deep feed forward network (with
depth corresponding to the length of the input sequence), with shared affine parameters at each layer. Our
gradient is computed by summing the losses from each time-step of the output.

Problem: Gradients in Vanilla RNN

Why are vanishing or exploding gradients an issue for RNNs?

Solution:

Solution: Gradients in Vanilla RNN

A major issue with the vanilla RNN is that they suffers from vanishing/exploding gradients similarly
to issues with deep feedforward networks. At each timestep, the hidden state ht is multiplied by W ,
so at the last timestep, the value of ht is effectively multiplied by W a total of t times. As more
timesteps pass (and t grows larger), more and more W matrices are multiplied together to produce
the final hidden state.
As with very deep feed-forward networks, depending on the values of W , the gradients of the loss
with respect to W may become very large or very small as they pass back down the unrolled network.
Additionally, the activation at each step can also contribute to the vanishing gradient problem – as
with the sigmoid activation function, tanh(·) asymptotes at very positive or very negative inputs, so
its gradients at those points is very small.

However, just as residual connections can be used to deal with vanishing gradients for feed-forward deep
neural networks, it can also be used for recurrent networks! Many more sophisticated architectures, such as
long short-term memory (LSTMs) and gated recurrent units (GRUs) effectively have a separate hidden state
term that gets passed forward in time (roughly) linearly, just like how residual layers allow x to "bypass"
a layer linearly. Those architectures introduce some other complicated operations, but the core idea is the
same – as are the benefits, as such models can typically handle much longer sequential tasks.

Discussion 05, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

Discussion 05 @ 2024-10-06 19:54:44Z

Problem: Coding RNNs Up!

Complete the class definition, started for you below. Assume that your hidden state is a vector of size
4, your input x is a vector of size 5, and your desired output y is a vector of size 3.

import numpy as np

class VanillaRNN:
def __init__(self):

self.hidden_state = np.zeros((?, ?))
self.W_hh = np.random.randn(?, ?)
self.W_xh = np.random.randn(?, ?)
self.W_hy = np.random.randn(?, ?)
self.Bh = np.random.randn(?)
self.By = np.random.randn(?)

def forward(self, x):
Processes the input at a single timestep and
updates the hidden state
self.hidden_state = np.tanh(...)
self.output = np.dot(...) + ...
return self.output

Solution:

Solution: Coding RNNs Up!

import numpy as np

class VanillaRNN:
def __init__(self):

self.hidden_state = np.zeros((4, 1))
self.W_hh = np.random.randn(4, 4)
self.W_xh = np.random.randn(4, 5)
self.W_hy = np.random.randn(3, 4)
self.Bh = np.random.randn(4,)
self.By = np.random.rand(3,)

def forward(self, x):
self.hidden_state = np.tanh(np.dot(self.W_hh, \

self.hidden_state) + np.dot(self.W_xhm, x) + self.Bh)
self.out = np.dot(self.W_hy, self.hidden_state) + self.By
return self.output

Discussion 05, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

Discussion 05 @ 2024-10-06 19:54:44Z

Problem: Forms of Sequential Inputs

You’ll notice that we assume the inputs to the RNN, xt, are vectors (since you’re multiplying matrices
with them). However, a lot of the time, your sequential data isn’t easily represented by vectors. How
can an RNN take the following as input: (1) a sequence of images (i.e., a video) or (2) discrete data
(like sequences of letters or words)?

Solution:

Solution: Forms of Sequential Inputs

(1) When processing a sequence of images, you can use the tricks discussed above for CNNs to map
from an image to a corresponding vector. That is, you can apply numerous convolutional layers, then
"flatten" the image into a single vector, which you pass use as the input to the standard RNN. These
convolutional layers can be trained end-to-end with the rest of the RNN.
However, an alternative is to take a CNN that you’ve already trained and chop off the final few
linear layers after it’s flattened the image. This is called using the CNN as a "pre-trained encoder" of
images.
(2) When processing sequences of discrete symbols (e.g., letters in a word or words in a sentence),
you need some way to map from the discrete symbols to vectors. Typically, you do this by assigning
an ID to each symbol in your vocabulary (e.g., the letters A - Z may correspond to IDs 1 - 26). Then,
you map each of these IDs to a vector. Some ways of doing this include:

(a) One-hot encoding: Produce a vector with the same number of elements as your vocabulary
and set all elements to zero, except for one element set to one (corresponding to the ID). This
is impractical for large symbol vocabularies (e.g., if you have a vocabulary of 50,000 words).

(b) Learned embedding: Initialize a matrix of shape (vocabulary size, fixed dimension size). For
the symbol with ID i, just get the i-th row of that matrix and use it as your vector representation
of the symbol. This matrix can actually be considered a layer of your neural network, so its
elements can be learned end-to-end.

(c) Pre-trained embeddings: Just like with images, there are certain approaches that directly
learn good vector representations of discrete symbols, which you can use in place of the learned
matrix from the above approach. One example is called word2vec, which assigns vectors to
words such that words that can be used in similar contexts have similar vector representations.

Discussion 05, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

	Types of Problems
	Why the Recurrence?
	Vanilla RNN

