
Discussion 04 @ 2024-09-29 19:37:27-07:00

Data C182 Designing, Visualizing & Understanding DNN
Fall 2024 Eric Kim, Naveen Ashish Discussion 04

This discussion will cover CNN and RNN.

1. Convolutional Neural Networks
Convolutional neural networks1 (CNN) are a type of neural network architecture that have become the key
ingredient for state of the art modern computer vision performance.

They perform operations similar to feed-forward neural networks that we have discussed, but explicitly
account for spatial structure in the data, and so are very common for computer vision tasks where inputs are
images. That said, CNNs can also be applied to non-image data with similar structure in the input, such as
time series or text data (in which case they’re taking advantage of temporal structure).

0.1 Convolution (Cross-Correlation) Operator
At the heart of CNNs is the convolution operator. In this discussion, what we refer to as a convolution
is actually the cross-correlation operator here instead, which is the exact same but with the indexing of
the weights in w inverted. For example, “convolutional” layers in the deep learning library Pytorch are
also actually cross-correlations instead, and homework 1 will also similarly have you implement cross-
correlation instead of the actual convolution.

To motivate the use of convolutions, we will work through an example of a 1-D convolution calculation to
illustrate how convolutions work over a single spatial dimension. Suppose we have an input x ∈ Rn, and
filter w ∈ Rk. We can compute the convolution of x ⋆ w as follows:

(a) Take your convolutional filter w and align it with the beginning of x. Take the dot product of w and the
x[0 : k − 1] (using Python-style zero-indexing here) and assign that as the first entry of the output.

(b) Suppose we have stride s. Shift the filter down by s indices, and now take the dot product of w and
x[s : k − 1 + s] and assign to the next entry of your output.

(c) Repeat until we run out of entries in x.

Below, we illustrate a 1D convolution with stride 1.

Input vector x∈Rn︷ ︸︸ ︷

x1
...
xk
...
xn


⋆

Convolutional filter w∈Rk︷ ︸︸ ︷
w1

...
wk

 =

Output vector y∈Rn−k+1︷ ︸︸ ︷
∑k

i=1wixi∑k
i=1wixi+1

...∑k
i=1wixi+n−k


1Recommended reading: http://cs231n.github.io/convolutional-networks/

Discussion 04, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 1

http://cs231n.github.io/convolutional-networks/

Discussion 04 @ 2024-09-29 19:37:27-07:00

We see that the output vector is smaller than the input vector (Rn−k−1 compared to Rn). A common way
to address this is zero-padding, in which we append zeros on both ends of the input vector before applying
the convolution (note that there are other conventions for zero-padding as well).

Often, we’ll be dealing with multiple spatial dimensions (2 spatial dimensions in the case of images). In this
case, we would need to slide our filter along all spatial dimensions to construct the output.

Problem 1: Test your know knowledge of convolution dimensions

In this problem, we will run a series of convolution-related operations to better understand how
dimensions are affected by convolutions.

(a) i. Suppose you have a 32 × 32 × 3 image (a 32 × 32 image with 3 input channels). What
are the resulting dimensions when you convolve with a 5× 5× 3 filter with stride 1 and
0 padding?

ii. What if we zero-pad the input by 2?

iii. Suppose we now stack 10 of these 5× 5× 3 filters and continue to zero pad the input by
2. What is the new shape of the output, and how many parameters are in our filters (not
including any bias parameters)?

iv. What would be the spatial dimensions after applying a 1 × 1 convolution? Think about
what this does.

Solution:

Solution 1: Test your know knowledge of convolution dimensions

i. The resulting spatial dimensions are 28× 28 (with one output channel).

ii. The resulting spatial dimensions are 32 × 32, so we have preserved the same size as the
input image.

iii. The resulting outputs are 32× 32× 10, with 10 output channels. There are 5 · 5 · 3 = 75
parameters per filter, so with 10 filters, we have 750 parameters in this layer. Note that, if
we did choose to include a bias parameter, then there would be 76 parameters per filter,
and so 760 in total.

iv. A 1 × 1 convolution does not change the spatial dimensions. For every spatial location,
it performs a linear map of the the input channels pointwise over space. In practice, this
is useful for changing the number of channels.

(b) (Convolutions as Matrix Multiplication) We note that convolutions are a linear operation. Recalling
linear algebra, any linear map (between finite-dimensional spaces) can be expressed as a matrix, so we
will see in this section how to write a convolution as a matrix multiplication.

Discussion 04, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

Discussion 04 @ 2024-09-29 19:37:27-07:00

Problem 2: Expressing convolutions as matrix multiplication

We shall again consider a 1D convolution. Consider an input x ∈ R4 and filter w ∈ R3. Letting
x̄ denote the result of zero-padding the input by 1 on each end, what is the matrix W such that

R4×6︷︸︸︷
W

Zero padded input x̄∈R6︷ ︸︸ ︷

0
x1
x2
x3
x4
0


= x̄ ∗ w?

Solution:

Solution 2: Expressing convolutions as matrix multiplication

Computing the convolution, we see that

x̄ ∗ w =


x1w2 + x2w3

x1w1 + x2w2 + x3w3

x2w1 + x3w2 + x4w3

x3w1 + x4w2

 .

Writing this out as a matrix multiplication, we obtain

W =


w1 w2 w3 0 0 0
0 w1 w2 w3 0 0
0 0 w1 w2 w3 0
0 0 0 w1 w2 w3

 .

We can observe now that the resulting matrix will be very sparse (most entries are 0) if the filter size
is much smaller than the input size, corresponding to the fact that such convolutions exploit spatial
locality. We also observe that there is a lot of parameter reuse, as the convolutional filter weights are
repeated many times throughout the explicit matrix.
This has several implications. First of all, this implies that convolutional layers are less expressive than
fully-connected layers (as fully connected layers are represented by arbitrary matrices).
Another important implication stems from the fact that we have very optimized tools for computing
matrix multiplications. While a naive implementation of a convolution will require looping over all the
spatial dimensions, it will turn out that reformulating the convolution as a matrix multiplication will
often be much faster due to these optimizations (for example, the Cythonized im2col function in part
4 of homework 1 essentially does this).

(c) (Backwards Pass for a Convolution) We’ll consider the same 1D convolution as before, but without
zero-padding for simplicity.

Discussion 04, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

Discussion 04 @ 2024-09-29 19:37:27-07:00

Problem 3: Backwards pass for convolutions

Let y = x ∗ w ∈ R2, where w ∈ R3, x ∈ R4. Let ∇yL denote the gradient of the loss with
respect to the output of the convolution. Compute the gradients of L with respect to x and w.
Can you express the gradients as convolutions themselves?

Solution:

Solution 3: Backwards pass for convolutions

Let δi = ∂L
∂yi

. We can explicitly write out the partial derivatives with respect to each entry of x.

∂L

∂x1
= w1δ1

∂L

∂x2
= w2δ1 + w1δ2

∂L

∂x3
= w3δ1 + w2δ2

∂L

∂x4
= w3δ2

We recognize this as convolution where we zero pad δ by 2 on each end, and convolve with the
filter w̃, where w̃ reverses the entries of the filter w. (Draw this out for students, explain why
sliding the filter along means that we should convolve the output derivative with w̃ instead of
w).
Now, we can similarly compute the partial derivatives for w

∂L

∂w1
= δ1x1 + δ2x2

∂L

∂w2
= δ1x2 + δ2x3

∂L

∂w3
= δ1x3 + δ2x4

We see that ∂L
∂w = x ⋆∇yL with no zero-padding.

(d) (backpropagation, 2D case, through a convolution layer) For the 2D convolution, we define the
forward pass as

yi,j,c′ =
∑
h,w,c

xi−h,j−w,cwh,w,c,c′

or more compactly as Y = X ∗ w, where X is the input tensor, w is the kernel tensor, Y is the output
tensor, and ∗ is the convolution operator.
The backward pass requires us to calculate the following two terms, ∂Loss

∂w , ∂Loss∂X , which (by the chain

Discussion 04, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

Discussion 04 @ 2024-09-29 19:37:27-07:00

rule) can be expressed as:

∂L

∂w
=

∂Y

∂w
· ∂L
∂Y

∂L

∂X
=

∂Y

∂X
· ∂L
∂Y

Where we are given ∂L
∂Y (eg the “dout” parameter passed into each “backwards()” function in HW01).

First, for this question: derive the gradients for the input: ∂L
∂X .

Hint: We can emulate the 1D case by calculating with all the indices, but we can also do this conceptu-
ally. Conceptually, if we pick a single pixel xi,j,c in the input, we can see that it contributes to multiple
output pixels, and if we vary it by an infinitesimal amount δxi,j,c, how does it vary the output tensor
Y , and how does it vary the loss L?

Solution: Since convolution is linear in both inputs and weights, we have δY = w ∗ δX . So, varying
δxi,j,c will vary yi+h,j+l,c′ by wh,l,c,c′δxi,j,c, where h, l are the indices of the filter, and c′ is the output
channel.
The loss L will vary by

∑
h,l,c′

∂L
∂yi+h,j+l,c′

∂yi+h,j+l,c′

∂xi,j,c
δxi,j,c =

∑
h,l,c′

∂L
∂yi+h,j+l,c′

wh,l,c,c′δxi,j,c

giving

∂L
∂xi,j,c

=
∑
h,l,c′

∂L
∂yi+h,j+l,c′

wh,l,c,c′

where you might notice that the right hand side is a convolution of the gradient of the loss with respect
to the output with the weights, except the weights are flipped. Concretely, we can define the following
“transposed” (rotated 180 degrees) kernel wT (note: this is not actually a transpose):

wT
h,l,c′,c := wkh−h,kw−l,c,c′

where kh, kw denote the spatial height/width of the kernel.
then we can write the backward pass as ∂L

∂X = ∂L
∂Y ∗ wT .

(e) (backpropagation, 2D case, kernel weights)
Next, derive the gradients for the weights ∂Loss

∂w .
Again consider the case of

yi,j,c′ =
∑
h,w,c

xi−h,j−w,cwh,w,c,c′

If we vary the kernel weights by δwh,w,c,c′ , how does it vary the output tensor Y , and how does it vary
the loss L?

Solution: Varying δwh,w,c,c′ will vary each of yi,j,c′ by δwh,w,c,c′xi−h,j−w,c, where i, j ranges over
the height and width of the output tensor. The loss L will vary by∑

i,j

∂L
∂yi,j,c′

xi−h,j−w,cδwh,w,c,c′

Discussion 04, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

Discussion 04 @ 2024-09-29 19:37:27-07:00

giving

∂L
∂wh,w,c,c′

=
∑
i,j

∂L
∂yi,j,c′

xi−h,j−w,c

More compactly, we can write this as (dw)h,w,c,c′ =
∑

ij(dY)i,j,c′(X)i−h,j−w,c, which can be seen
as a 2D convolution of dY with X reflected across its origin. That is, define XT as the tensor with
entries XT

i,j,c = X−i,−j,c, then we can write the backward pass as

dw·,·,c,c′ = (XT)·,·,c ∗ (dY)·,·,c′

Note: A good reference for backward pass in CNNs is Convolutions and Backpropagations.

(f) A maxpooling layer has 2 architectural hyperparameters: the stride step size(S) and the "filter size"
(K). The maxpooling operation takes the maximum value in each K × K window of the input, and
strides by S pixels each time. See Figure 1 for an example of maxpooling with K = 2, S = 2.

Figure 1: Example of maxpooling when K = 2, S = 2.

What is the output feature shape that this pooling layer produces?
Solution:
W ′ = (W −K)/S + 1
H ′ = (H −K)/S + 1
C ′ = C

(g) (backpropagate through a 2D pool) Consider a maxpooling layer Y = maxpool(X). What is ∂L
∂X

as an expression of X, ∂L
∂Y ? Similarly for average pooling. Note that since maxpooling is applied

independently to each channel, we can without loss of generality consider the case of just a single
channel. You can also try generalizing this to n-dimensional convolutions.

HINT: Start with the simplest case first, with just 2 × 2 maxpool, where X =

[
x11 x12
x21 x22

]
. Further

assume that top left value is selected by the max operation. i.e.

y1,1 = x1,1 = max(x1,1, x1,2, x2,1, x2,2) (1)

Then generalize to arbitrary max positions. Once you’ve done that, the average pooling case should
be straightforward.

Discussion 04, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c

Discussion 04 @ 2024-09-29 19:37:27-07:00

Solution: In the simplest case, output Y has size 1x1. For the max pooling case,

∂y11
∂xi,j

=

{
1, if (i, j) = 1, 1

0, otherwise
(2)

Combining all four partial derivatives, we have

∂L

dX
=

[
dx11 dx12
dx21 dx22

]
=

[
dy11 0
0 0

]
(3)

Where dy11 is ∂L
∂y11

. For the average pooling case,

∂y11
∂xi,j

= 1/4 (4)

∂L

dX
=

[
dx11 dx12
dx21 dx22

]
=

[
dy11
4

dy11
4

dy11
4

dy11
4

]
(5)

Where dyij is ∂L
∂yij

.
In the general setting, for max pooling, we can notice that x and y have a one to one mapping. Each
x value is involved in calculation of exactly one y value. Let k = i//2, l = j//2, where // performs
the floordiv operation, let

δi,j =
∂ykl
∂xi,j

=

{
1, if xi,j = max(xi,j , xi+1,j , xi,j+1, xi+1,j+1)

0, otherwise
(6)

, then

dxi,j =
∑
ymn

dymn
∂ymn

∂xi,j
= dyklδi,j (7)

∂L
dX is the matrix constructed by each dxi,j . It will have similar pattern to the simplest case. For each
2x2 block, only one of the input pixel has gradient of magnitude one flowing back, and the rest three
inputs have zero gradient.
This can be implemented in code with argmax in numpy. It is tricky to vectorize this, but simple (if
slow) to implement this with nested loops.
For the average pooling general case,

δi,j =
∂ykl
∂xi,j

=
1

4
(8)

dxi,j =
∑
ymn

dymn
∂ymn

∂xi,j
= dyklδi,j =

dykl
4

(9)

Average pooling distributes the gradient evenly across each 2x2 input blocks. Equivalently, ∂L
∂X =

AveragePool(∂L∂Y), which is particularly elegant.

Discussion 04, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

Discussion 04 @ 2024-09-29 19:37:27-07:00

(h) BatchNorm for CNNs is a bit different from BatchNorm for fully connected layers. The idea is that
because CNN must treat a picture in the same way even if we shift the picture, we also should treat
the neural activations inside the CNN the same way even if we shift the neurons. In other words, we
treat the many outputs from a single convolutional kernel on a single picture as if they come from the
same minibatch. That is, we apply BatchNorm per-channel, across all locations and all pictures in the
minibatch.

import numpy as np

def batchnorm(x, gamma, beta, epsilon=1e-8):
Mean and variance of each feature
mu = np.mean(x, axis=0) # shape (N,)
var = np.var(x, axis=0) # shape (N,)

Normalize the activations
x_hat = (x - mu) / np.sqrt(var + epsilon) # shape (B, N)

Apply the linear transform
y = gamma * x_hat + beta # shape (B, N)

return y

def batchnorm_cnn(x, gamma, beta, epsilon=1e-8):
Calculate the mean and variance for each channel.
mean = np.mean(x, axis=(0, 1, 2), keepdims=True)
var = np.var(x, axis=(0, 1, 2), keepdims=True)

Normalize the input tensor.
x_hat = (x - mean) / np.sqrt(var + epsilon)

Scale and shift the normalized tensor.
y = gamma * x_hat + beta

return y

Alternative implementation using reshape
Since it is just a special case of batchnorm for cnn
def batchnorm_cnn(x, gamma, beta, epsilon=1e-8):

B, H, W, C = x.shape
x_reshaped = x.reshape(B * H * W, C)
y = batchnorm(x_reshaped, gamma, beta, epsilon)
y = y.reshape(B, H, W, C)
return y

Given this, how do we implement the backward pass for BatchNorm in a CNN?

Solution: The backward pass for BatchNorm in a CNN is similar to the backward pass for Batch-
Norm in a fully connected layer. It suffices to reshape the input (B,H,W,C) tensor to (BHW,C),
apply the BatchNorm backward pass, and then reshape the output back to the original shape.

Discussion 04, © UCB Data C182, Fall 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

	Convolution (Cross-Correlation) Operator

