
Data 182 Designing, Visualizing and Understanding Deep Neural Networks
Fall 2024 Eric Kim, Naveen Ashish Discussion 1

This discussion worksheet/note contains information from future lectures.

Welcome to CS 182/282A - we’re excited to have you here and have some deep conversations with
you! This discussion will cover some statistics review.

1 Class Logistics
Welcome to the first discussion!

• The goal of the sections/discussions is to provide useful supplemental information to the main lecture

• There will be a mix of practical skills discussions and theoretical discussion

List of Discussion Schedules is available on the course website. If you have requests on topics we should
include in any future discussions, please let us know.

More importantly, please familiarize yourselves with class logistics available on our class website.

Problem 0: Class Logistics

Read through the syllabus on the class website, and answer the following questions:

1. What times and where will lectures happen?

2. When and where is the midterm?

3. How much slip days will you be given?

4. Can you use slip days for the final project?

Solution 0: Class Logistics

1. They will happen every Tuesday/Thursday 6:30 - 8:00 PM at Evans 10 or via Zoom.

2. There will be one Midterm. Time is TBD.

3. There will be 5 slip days, counted in day increments (i.e., if you submit your homework at
12:01AM after the deadline, that will count as one slip day)
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2 Machine Learning Overview
2.1 Formulating Learning Problems
In this course, we will discuss 2 main types of learning problems:

• Supervised Learning

• Unsupervised Learning

In supervised learning, you are given a dataset D = {(x1, y1), . . . , (xn, yn)} containing input vectors and
labels, and attempt to learn fθ(·) such that fθ(x) approximates the true label y.

In unsupervised learning, your dataset is unlabeled, and D = {x1, . . . , xn}, and you attempt to learn prop-
erties of the underlying distribution of D.

2.2 Solving Machine Learning Problems
To solve a machine learning problem, you must first define three “parameters”.

1. Pick a model class (for example, do you want to use logistic regression or do you want to use a deep
neural network?)

2. Pick a loss function (how do you want to determine the ”badness” of your model performance?)

3. Pick your optimizer (how are you going to optimize your model parameters θ to minimize the loss?)

Then, you typically run this on a big CPU or GPU.

2.3 Dataset Splits During Training
In the case when hyper-parameter tuning is possible (e.g., learning rate of deep nets), in addition to training
and test sets, you should hold out a validation set. The following policies should be taken when using
training/validation/test sets:

• Only train your model on the training set, but not the validation set and test set.

• You should never tune your hyper-parameters on your test set or choose the best model based on the
performance on the test set.

• The test set should only be run once after you have finalized your model, regardless of whether you
use cross-validation or a single training-validation split. You should hold out your test set until you
have finalized your model.

• You should use a new test set when you train a new model.

Problem 1: Validation Potpourri

1. Why should you never tune your hyperparameters on your test set?

2. What should your validation set be used for?

3. Describe a general ML workflow with datasets
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Solution 1: Validation Potpourri

1. In tuning your hyperparameters to the test set, you are ‘over-fitting’ your model manually to
the test set, and your test set error will no longer be an unbiased estimate of the true error
on the dataset. You should only tune your hyper-parameters according to the validation set
performance to preserve the validity of the test set.

2. Validation sets should be used to tune your hyperparameters.

3. First, split your training set into train/validation sets. Then, train your model using your
training set. After training, tune your hyperparameter using the validation set. Finally, test
your model using the test set (and do not tune hyperparameters).

3 Statistics Review
3.1 Probability Review
Definition 1 (Dataset). A dataset D of size n is composed of n individual examples {(x1, y1), . . . , (xn, yn)},
where xi ∈ Rd represents the ith input feature and yi represents the ith label. Datasets without the label yi
are called unlabeled datasets, and datasets with these labels are called labeled datasets.

In general, each example could represent any data type: scalar values, images, text, audio waves and more.

Definition 2 (Joint Distribution). The joint distribution of two random variables A and B is the probability
of both events co-occurring, and is written as P(A,B).

Suppose we would like to model the probability distribution of our data. This will be a model of the joint
distribution of our data, which is given by

P(x1, . . . , xn) (1)

Definition 3 (Conditional Probability). The conditional probability of two random variables A and B is
the probability of one occurring given that the other has occurred. The probability that A has occurred given
that B has occurred is denoted P(A|B)

Definition 4 (Independence). If A and B are independent random variables, and their probabilities are P(A)
and P(B), then their joint probability is P(A,B) = P(A)× P(B). In other words, A and B are independent
iff P(A) = P(A|B).

We often assume that datasets consist of independent, identically distributed (i.i.d.) samples. Notice what
this does to the joint distribution of our data from Eq 1.

P(x1, . . . , xn) =

n∏
i=1

P(xi) (2)

Finally, we have the identity
P(A,B) = P(A|B)P(B) = P(B|A)P(A) (3)

Dividing by P(B) then gives us Bayes’ Theorem.

P(A|B) =
P(B|A)P(A)

P(B)
(4)
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Problem 2: Do I Have a Flu?

Let P(H) be the probability you have a headache, and P(F ) be the probability you have a flu.
Calculate P(F ), P(H), P(H|F ). Then, calculate P(F |H) using Bayes’ Theorem, given the following
data:

Headache Flu

N N
Y N
N N
Y Y
Y Y
N Y

Solution 2: Do I Have a Flu?

Since flu occurs 3 in 6 times, we have,

P(F ) =
3

6
=

1

2

Likewise, a headache happened 3 in 6 times, so we have,

P(H) =
3

6
=

1

2

Then, given that we have a flu (3 times), the person experienced a headache 2 times, so we have,

P(H|F ) =
2

3

Finally, we recall the Bayes’ Theorem,

P(F |H) =
P(H|F )P(F )

P(H)

Using the Bayes’ Theorem, we conclude,

P(F |H) =
2
3 ×

1
2

1
2

=
2

3

3.2 Estimators
In statistics, we often observe X ∼ Pθ where Pθ is a class of probability distribution parameterized by θ.
Here, X is the data and observed, and θ is a parameter and unobserved. Then, the goal of estimation is the
following:

We observe X ∼ Pθ and estimate the value of some estimand g(θ)

Definition 5 (Statistic). A statistic is any function T (X) of the observed data X.

Definition 6 (Estimator). Estimator fθ(X) are rules to calculate an estimate of some function of observed
data. In other words, an estimator is any statistic meant to guess an estimand g(θ). We also often use the
”hat” notation, Ŷ to denote an estimator.

For example, a common estimator of the population mean is the sample mean defined by: X̄ = 1
N

∑n
i=1Xi.

Definition 7 (Bias and Variance of Estimator). Bias of an estimator is a measure of how much does the
expected value of the estimator differ from the true distribution. Suppose we have a randomly sampled training
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set D and a test input x, and we select an estimator denoted θ = θ̂(D). To understand the Bias-Variance
Tradeoff, please: 1. demonstrate the decomposition of Bias-Variance. 2. explain their relationships with
over/underfit. (See Lecture 3)

According to the derivation, we can see that the best estimator, should have low bias and low variance. So
why don’t we always use an unbiased estimator? Sometimes, we might want to introduce a little bit of bias
if it significantly decreases the variance.

4 Function Approximation & Risk Functions
There is a lot of hype surrounding deep neural networks, but at their core they are just ways of learning
functions. For example, in the case of classification, we try to learn P(y|x), that is the probability our true
label is some class y given input features x. In the case of regression, it’s a similar continuous response
variable. In the case of generative models, we are trying to learn to approximate a whole distribution. In all
of the cases, we are trying to find an estimator fθ(x) of a true distribution y.

To find fθ(x), we must adjust the weights and biases in the network, often called the parameters θ of the
network, in order to minimize the distance between the estimated distribution fθ(x) and the true distribution
y.

But how do we define these distance metrics? It turns out we can use Risk function to evaluate how well
an estimator performs.

4.1 Loss Functions & Risk Functions
Definition 8 (Loss Function). Loss function L(x, y, θ) measures the ”badness” of an estimator, and is often
measured in terms of some distance between the estimate and true estimator.

For example, the zero-one loss is
∑n
i=1 δ(fθ(xi) 6= yi) where we add one if the estimate is off, and add zero

is the estimate is correct.

Problem 3: Derivative of Sigmoid

Sigmoid function is a popular activation function in neural networks (we will learn more about what
this means in due course). Let us denote the sigmoid function as

σ(x) =
1

1 + e−x

Calculate the partial derivative of the sigmoid function with respect to x in terms of σ(x).
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Solution 3: Derivative of Sigmoid

We first rewrite σ(x) as (1 + e−x)−1, and proceed:

d

dx
σ(x) =

d

dx
(1 + e−x)−1

= −(1 + e−x)−2(−e−x)

=
e−x

(1 + e−x)2

=
1

1 + e−x
· e−x

1 + e−x
break up into different pieces

=
1

1 + e−x
·
(

1− 1

1 + e−x

)
= σ(x) · (1− σ(x))

Problem 4: Derivative of Softmax (Challenge)

Recall the softmax function, defined by

pi =
efi(x)∑n
j=1 e

fj(x)

Softmax can be thought of as a multi-class extension to sigmoid function, and its derivative is often
used for optimization. Calculate the partial derivative of the softmax function with respect to fk(x)
for each k.
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Solution 4: Derivative of Softmax (Challenge)

We recall the quotient role for derivatives, which states that for f(x) = g(x)/h(x), we have that

f ′(x) =
g′(x)h(x)− h′(x)g(x)

h(x)2

In our case, we let g = efi and h =
∑n
j=1 fj .

Then, we start with the case where i = k,

∂pi
∂fk

=
efi
∑n
j=1 e

fj − efkefi(∑n
j=1 e

fj

)2
=

efi∑n
j=1 e

fj

∑n
j=1 e

fj − efk∑n
j=1 e

fj

= pi(1− pj)

Likewise, we solve the i 6= k case,

∂pi
∂fk

=
0− efkefi(∑n
j=1 e

fj

)2
= − efi∑n

j=1 e
fj

efk∑n
j=1 e

fj

= −pi · pj

Then,

∂pi
∂fk

=

{
pi(1− pj) if i = j

−pipj if i 6= j

Definition 9 (Risk Function). The risk function is the expected loss (known as the risk), measured as a
function of the parameter θ, so

R(θ; f(·)) = Ex∼p(x),y∼p(y|x)[L(x, y, θ)]

For example, if L(x, y, θ) = (y− fθ(x))2 (squared error loss), then R(θ; f(·)) = Ex∼p(x),y∼p(y|x)[(y− fθ(x))2],
also known as the mean squared error (or MSE). This is the expected squared deviation of the estimator
from the true distribution (over the true distribution).

That said, we cannot directly optimize this objective (i.e., minimize the risk), since we do not have access
to the true distribution, so we cannot sample x ∼ p(x) and we only have the dataset D. Instead, we use
empirical risk minimization where we replace the true distribution by the empirical distribution from
D.

Definition 10 (Empirical Risk). The empirical risk is the risk evaluated on samples from the true distri-
bution, and approximates the true risk. It is given by:

1

n

n∑
i=1

L(xi, yi, θ)

Supervised learning is (usually) empirical risk minimization, and we must ask: is this the same as true risk
minimization? To answer this question, we will analyze the bias-variance tradeoff in next week’s discussion
section.
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5 Summary
• We discuss two main types of ML problems: supervised and unsupervised learning.

• Solving ML problems requires us to pick a model class, loss function and an optimizer.

• Recall the Bayes Theorem,

P(A|B) =
P(B|A)P(A)

P(B)

• Recall that an estimator are rules to calculate an estimate of some function of the observed data, and
will often be denoted by fθ(X) where X is the data and θ are parameters

• Loss functions measure the ”badness” of an estimator, and the risk is the expected loss.

• Bias-Variance tradeoff in ?? states that errors can be decomposed into variance of the estimator plus
the square of its bias (and irreducible error).

• Bias and Variance are intimately related to overfitting and underfitting problems. Overfitting oc-
curs when the model fits the data too well and is often the result of an overly complicated model.
Underfitting occurs when the model fails to capture the trend, and does not fit the data well enough.

• Divide your data into training, validation and test sets. Use training set to train your model, validation
to tune your hyperparameters and test set to calculate the final accuracy.

Data 182, Fall 2024, Discussion 1 8


	Class Logistics
	Machine Learning Overview
	Formulating Learning Problems
	Solving Machine Learning Problems
	Dataset Splits During Training

	Statistics Review
	Probability Review
	Estimators

	Function Approximation & Risk Functions
	Loss Functions & Risk Functions

	Summary

