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Abstract: This paper presents a data-driven solution for assessing fault (defect) risk 
in software code. Our particular interest is in code bases of  large software projects 
(including open-source projects) that involve multiple developers, and where the 
project code base evolves over an extended period of time (multiple years). Our 
goal is to predict fault risk at the level of code check-in episodes, where individual 
commits are assessed for risk. Our solution predicts code risk by analyzing a rich 
variety of data that has been aggregated about software engineering development 
behavior. It is powered primarily by machine learning. A central aspect of this work 
is on determining the  most effective machine learning algorithm(s) for this 
problem, after a comprehensive investigation of a wide variety of algorithms and 
frameworks. The resulting system is effective in predicting risk code commits in 
repositories with a very sparse code fault density (1-3%). We are able to achieve an 
average of 10-fold improvement in the precision (Precision@100) of identifying 
faulty commits, and an as high as 20-fold improvement in some cases. The 
improved efficiency in identifying risky code translates directly to expected 
improvement in efficiency (reduction of time and effort) for code review. 
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I. INTRODUCTION 

Maintaining large software repositories, especially those that involve multiple 
developers and evolve over a long period of time (years), is a challenge [8]. The 
ability to identify risky code, as it is checked in, would be of significant value from 
a software quality perspective. By risky code we mean portions of code (checked 
in) that are likely to result in a fault in the future in that repository. A fault is an 
error or “bug” in software that cause the software to behave in a manner different 
and unwanted from as designed (and intended).  This paper presents our work on 
developing an approach for efficiently identifying code fault risk in such large 
software project code bases. One of the key novel aspects of the research has been 
to investigate how the behavior of developers - in the context of software 
development, bears upon the quality of the software code.  

Our approach is data centric, where we leverage a variety of dynamically aggregated 
data for predicting code fault risk. This work focuses on the machine learning details 
of CodeFault [15], a system for automatically identifying software risk based on 
engineering behavior. CodeFault aggregates data from multiple sources associated 
with a particular software repository of interest, uses a novel approach to markup 
faults, and leverages machine learning and code-as-document techniques [11] to 
predict commits of risk based on patterns mined from this combined data set. 

We have modeled the problem as a classification problem i.e., where individual 
code commits are classified for fault risk. The application of this (originally) 
commit level risk assessment for practical software quality management, is 
discussed ahead in the paper. Our solution achieves an (on-average) 10-fold 
increase in the precision of faulty commit identification - compared to an exhaustive 
search or examination of random subsets of commits for faults. Additionally, we 
are able to identify the primary factors that do (and do not) influence software 
quality in terms of code fault risk.  The aggregated data, the basis of our data-driven 
approach, includes  1) data related to development behavior i.e., the behavior of 
individual developers’, and 2) data about software vulnerabilities which is 
employed to learn behavioral patterns associated with faulty code.   Code risk in a 
new (unseen) software project can then be assessed based on the patterns that 
emerge from analysis of the integrated database (which has prior data).  

This paper is organized as follows. Section 2 is a discussion summary on code risk 
assessment, in general. Section 3 starts with a brief summary of the database 
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curation, and then describes the feature engineering for machine learning done over 
this data. We also introduce the machine learning paradigms investigated.  In 
Section 4 we summarize the key conclusions from the investigation, namely (i) The 
most effective machine learning approach (algorithm) for this problem. (ii) 
Explaining the machine learning in terms of the specific most influencing factors 
we uncovered that are associated with code fault risk. (iii) The configuration and 
parameters for training as well as operating such a code risk prediction system in a 
real-world and dynamically evolving software repository environment.  Section 5 
discusses related work on code risk assessment. This has been an area of 
investigation for decades but human behavioral aspects have been relatively 
unexplored. Finally Section 6 provides a conclusion and directions for future work.  

II. DISCUSSION 

Software vulnerability has been investigated at various levels, such as identifying 
vulnerable regions (defined by specific range of lines of code), specific modules 
that are vulnerable, vulnerable files, a more granular identification at the level of 
individual code changes and commits [1]. The work in [2] is a first of its kind 
empirical study to determine the characteristics of vulnerable code  changes, and in 
particular the characteristics of developers likely to introduce code vulnerabilities. 
The study uncovered interesting insights, for instance the more experienced 
developers authored the majority of the vulnerabilities but changes by less 
experienced developers were 2-24 times more likely to inject vulnerabilities.  The 
likelihood of a vulnerability being introduced increases with number of lines of code 
changed.  The code author experience and author’s (place of) employment were also 
found  to have an influence on the propensity of vulnerability injection.  VCCFinder 
[3] is a system that identifies commits in a repository that are likely to introduce 
defects. The system does this on the basis of features related to the code commit 
activity and aspects of the developers. It also factors text based features, coming 
from developer comments. VCCFinder was developed based on datasets from 
Github where (known) CVEs were mapped to Github commits. An SVM is trained 
to then classify faulty commits based on (i) repository associated features, namely 
the total number of commits and the number of developers for that repository. (ii) 
commit associated features  such as the number of  additions, deletions and also the 
number of commit hunks.  (iii) the commit message, treated as free text (iv) 
functions in the code (v) keywords (from the code programming language). The 
system uncovered interesting patterns such as new developers being more likely to 
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introduce defects. Or, commits over code that has been iterated over frequently, 
including by multiple developers, are more likely to inject faults.  

The work of [5] contributes a new dimension for feature engineering for defect 
prediction. Traditionally, developer metrics such as their experience, coding skills, 
commit activities etc. are measured in a single snapshot. In these system these 
metrics are captured periodically, which enables capturing the change in developer 
behavior over time. The model for defect  has been evaluated on the Lucene and 
Jackrabbit open-source repositories. A number of supervised machine learning 
classifiers such as Random Forest, Naïve Bayes, Regression, J48 Decision Trees 
etc. were evaluated. For test datasets with fault (commit) densities of 33-50% the 
system achieved commit fault classification accuracies in the range of 0.5-0.7 F1 
score. [1] presents an approach to personalized defect prediction where a separate 
defection prediction model is developed for each developer. Defects are classified 
at the file change level and the system does so based on features in three main 
categories namely (i) code characteristic vectors  (ii) bag of words and (iii) 
metadata, such as hour , min and day of commit and also file path names etc.  This 
system was able to achieve a four-fold increase in bug detection compared to 
traditional change classification on inspecting the top 20% lines of code that are 
predicted buggy. The classification accuracy of classifying defects F1 is in the range 
of 0.59-0.74  on datasets where the percent of buggy changes (fault density) is 25-
30%.  

III. APPROACH 

We describe 1) feature engineering over the data and 2) the machine learning 
investigation in this section.   

A. Feature Engineering  

The aggregated database is assembled over data coming from open-source software 
repositories (such as GitHub), publicly available databases, and profiles of software 
developers on open Internet forums and social-media. It is collected using a 
combination of  API access, web scraping, and git-style data collection scripts. This 
database also has information on whether each individual commit is faulty, or not. 
The fault/no-fault labeling was obtained by first identifying commits that indicated 
a fix and then selectively working backwards to identify which prior commits 
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introduced code that was removed as part of the fix, using detailed techniques 
described in [15].  

The aggregated database has data which is structured but we need to further 
synthesize features from this data, to then feed into the machine learning algorithms 
investigated. We considered the various aspects that can potentially influence code 
faultiness, and determined three distinct categories of potentially influencing 
features. The categories relate to properties of particular commits, those of 
developers, and those of the code.  

Commit oriented features are aspects of an individual commit itself. The features 
include 1) aspects of commit activity, such as modifications, additions, deletions 
counts associated the commit. Each of the counts becomes a commit related feature. 
2) temporal aspects, starting with date (time) stamp of the commit and including 
derived features such as the hour of the day and the day of the week of that commit.  
4) commit description, such as the commit message provided with the commit 

Developer oriented features are features related to software developers associated 
with a code repository (as authors) or associated with particular commits in the 
code. These include 1) the developer identity and associated attributes such as their 
login ID, name, employer, location etc. 2)  developer reputation, in measures 
(attributes) such as star ratings, number of “likes” (on their repository, profile etc.). 
3) developer knowledge and skills such as their set of programming languages etc. 

Code oriented features which are features of the code files associated with the 
commit. Such as the folder path details of a code file, file extension type etc.   

Table I provides the specific features that are extracted or synthesized from the 
analysis database. These features are in three categories, (a) developer oriented 
features, (b) commit oriented features and (c) (code) file oriented features.  

TABLE I.  FEATURES FROM THE ANALYSIS DATABASE 

(a) Commit oriented features 

Feature Description Example 

ID Commit identifier 12345 
Commit SHA Commit hash identifier 2acee567eed8889f7ae 
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Commit message The text description included as 

commit documentation 
'Updated PCRE used 
for win32 builds.' 

Modifications 
count 

Modifications in a commit  45 

Additions count Additions in a commit 32 

Deletions count Deletions in a commit 39 

Author name, 
login, ID 

Code author name, login, and 
identifier 

John Smith, 
Jsmith123, 4563 

Author email Code author email jsmith@microsoft.com 

Committer name, 
login, ID 

Code committer name, login, 
and identifier 

Mike Foster, mfoster, 
3322 

Commit date 
Hour of day* 
Day of week* 

Date  stamp of the commit. Note 
that (the commit) ‘hour of day’ 
and ‘day of week’ are derived 
from the commit date stamp  

'2019-04-24 13:38:51' 
13 
Friday 

 

(b) Developer oriented features 

Feature Description Example 

ID (Unique) developer identifier 1222 

login Developer login name JSmith123 

avatar_url Profile URL Github.com/JSmith123 

Company  Organization affiliated with  Microsoft 

Blog Developer has a blog (Y/N) Y 

Location Geolocation if given Seattle 

Email Email address jsmith@microsoft.com 

Hireable Hireable (Y/N)  N 

Bio Developer bio (if any)  

Public repos 
count 

Count of developer’s 
repositories 

73 

Public gists count Count of developer’s gists  4 

Followers count Count of followers 35 

Following count Count of people followed 22 
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(c) Code oriented features 

Feature Description Example 

ID File identifier 8 
Commit meta ID Associated commit 

identifier  
2 

File path Directory path to the file src/main/scripts/ 
proxy_module.java 

Status  File modified  modified 

Modification, additions, 
deletions  

Activity counts 23, 17, 4 

Path 1* Root folder name src 
Path 2* File name proxy_module 
Ext File extension “java” 

Path as text Path folder names “src main scripts 
proxy_module” 

Deleted code  return 

X+","+wordLength(str)+ 

","+endsNumber(str)+","

+ 

hasYesNo(str)+","+ 

charFractions(str); 

We have above 14 commit oriented features, 11 developer oriented features and 10 
code oriented features – a total of 35 features in the feature vector associated with a 
commit.  

B. Fault Risk Prediction: Machine Learning Classification 

The fundamental problem is that of predicting whether a commit will result in a 
fault or not. However, and as with most predictive analysis goals, rather than a 
binary Y/N of whether the commit will be faulty we want the probabilistic 
likelihood of a commit being faulty. The likelihood translates directly to the commit 
risk. The aggregated database contains the fault status of each individual commit – 
essentially the target class in our classification problem.  Thus supervised learning 
based classification [13] becomes feasible.  

The classification problem is formulated at a commit level. The goal is, for new data 
(i.e., commits), to assign a quantitative faultiness likelihood to the commit. This 
likelihood is simply the probabilistic likelihood that the commit belongs to the 
fault=Y class, by any classifier.  
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We have investigated  three different paradigms (and associated frameworks): 

1) Feature driven classifiers These are “traditional” classifiers that work off  
synthesized features (the features  provided in Table I). The options are 
classifiers such as Decision Tree [9], SVM [9], Random Forest [9] and many 
others that are available in commonly used machine learning frameworks. Here 
we also treat certain fields of data as unstructured text. Then, text classifiers, 
that are somewhat different from the discrete feature driven classifiers (such as 
Decision Tree, SVM etc.) are employed over these text fields to predict fault 
risk.  

2) Ensembles over multiple classifiers In simple terms, a classifier ensemble is 
akin to a committee of experts, where the opinion of multiple experts is taken 
into account [9]. In this case we assembled and evaluated a variety of classifier 
ensembles.  

3) Deep learning classifiers These are classifiers in the unsupervised feature 
learning category where the system itself learns the features to be employed. 
The deep learning classifiers i employ multiple layers of neural networks to 
perform the classification. Rather than developing custom deep learning 
models ourselves we use cloud based automated machine learning [12] 
frameworks where the (deep learning based) models are assembled 
automatically. This is done using techniques such as neural architecture search 
(NAS) [12]. The cloud automated machine learning services also provide the 
high end computational resources that deep learning approaches typically 
require.   

IV. EVALUATION 

As mentioned above, our goal was to arrive at an efficient code risk assessment 
solution after a comprehensive exploration of various machine learning algorithms 
and frameworks. By efficient risk assessment we mean finding the maximum 
amount of risky code commits with the least effort. An inefficient approach would 
be (i) Exhaustively examining all code commits in a repository – this is practically 
infeasible in large code bases. (ii) Examining randomly sampled subsets of code 
commits with the hope of finding risky commits. We refer to this approach as the 
brute force approach. The overall goal is to then apply an efficient approach in a 
production setting of a large software repository development.  
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The evaluation progressed as follows. We first evaluated a wide spectrum of feature 
driven classifiers with features of different kinds. We then extended that analysis to 
ensembles of multiple different classifiers, including embeddings-based text 
classifier. We further evaluated the same (commit fault) classification task with the 
same feature set on a deep learning automated machine learning framework. 
Orthogonally, we a) investigated the explainability of the approach in terms of 
determining which factors do (or do not) bear upon fault risk, and b) conducted a 
learning curve analysis to establish the limits of fault risk prediction accuracy that 
can be achieved with such data and characterize the amount of data (number of 
commits) required for good predictions. We present the results of these evaluations, 
in the above order. 

A. Classification 

There are three facets of the classification approach – individual classifiers, 
ensembles of multiple classifiers, and deep learning using automated machine 
learning services.   

1) Feature Driven Classification 

We started by evaluating individual feature driven classifiers, such as Decision 
Tree, Random Forest, Naïve Bayes , Support Vector Machine (SVM) and others. In 
this project we employed the SciKit Learn machine learning framework in Python 
[13], that provides a wide spectrum of machine learning algorithm implementation 
as well as accompanying data manipulation utilities.  In Table II we provide 
experimental results on the accuracy of (ten) individual feature-driven classifiers 
for classifying commit faultiness. Given space constraints, results are provided for 
only 3 of the (over) 60 datasets we have conducted the evaluation on.  The results 
presented are representative of the entire dataset. Note: P=Precision, R=Recall and 
F=F-Measure in the tables hereon. 
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TABLE II.  INDIVIDUAL, FEATURE DRIVEN CLASSIFIERS 

 
Classifier 

Nginx  
(Baseline: 0.02) 
P               R            F 

Apache 
(Baseline: 0.01) 

P               R            F 

Wget  
(Baseline: 0.02) 
P             R            F 

Random Forest     
Decision Tree 
AdaBoost 
Naïve Bayes 
SVM      
QDA 
KNN   
Message  text 
File tokens 
Code snippets  

0.11 
0.59 
0.09 
0.20 
0.00 
0.19 
0.10 
0.12 
0.05 
0.08 

0.79 
0.74 
0.71 
0.36 
0.00 
0.37 
0.20 
0.40 
0.84 
0.14 

0.19 
0.66 
0.16 
0.26 
NA 
0.25 
0.13 
0.18 
0.09 
0.10 

0.03 
0.34 
0.01 
0.03 
0.00 
0.03 
0.00 
0.07 
0.02 
0.02 

0.74 
0.46 
0.56 
0.07 
0.00 
0.09 
0.00 
0.19 
0.74 
0.05 

0.06 
0.39 
0.02 
0.04 
NA 
0.04 
NA 
0.10 
0.04 
0.03 

0.09 
0.31 
0.00 
0.00 
0.00 
0.00 
0.03 
0.12 
0.03 
0.29 

0.81 
0.27 
0.00 
0.00 
0.00 
0.00 
0.08 
0.11 
0.43 
0.05 

0.16 
0.29 
NA 
NA 
NA 
NA 
0.04 
0.11 
0.06 
0.09 

The (representative) results in Table II provide several important insights, which 
include:  

1. We observe a rather high variance in the classification accuracy across 
different types of classifiers. For instance the  precision ranges from 0 (for 
SVM) to as high as 0.59 (for the Decision Tree classifier and for the nginx 
dataset).  

2. For effective classifiers, such as the Decision Tree, the fault classification 
precision is high, relative to the precision achieved with brute force random 
sampling examination (the repository fault density essentially). This classifier 
is able to achieve a precision of 0.59 for nginx where the fault density is 0.02 
i.e. a 30X improvement is achieved in fault identification. A similar 25-30X 
precision improvement is observed for the apache and wget datasets as well.  

3. The three text data driven classifiers (over the commit message, file path as 
text, and code snippets as text) are able to achieve a moderately high precision 
improvement as well – a 5-10X improvement over the brute force examination 
precision.  

2) Ensembles 

We next evaluated ensembles of multiple classifiers. A classifier ensemble is a 
“meta-classifier” [13] that is a classifier on top of other individual classifiers with 
the output of the latter treated as features of the meta classifier.  Table III provides 
the results of ensemble evaluation with two different meta classification schemes. 
As above, results are reported for only a small subset of datasets evaluated but are 
representative of the findings in all datasets. 
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In the ensembles results, we do not see any merits of a voting based ensemble. The 
ensemble accuracies are inferior to the best individual classifier (Decision Tree) 
accuracies in terms of precision as well as F-score. The XGBoost driven ensemble 
is however significantly better than the voting based ensemble. It does well when 
taking an ensemble of all the (ten) individual classifiers as well as when taking an 
ensemble of only the top two classifiers – Decision Tree (DT) and Random Forest 
(RF). Nevertheless its notable that the accuracy of the individual Decision Tree 
classifier stands better than any ensemble, even with XGBoost – we attribute this to 
possible over-fitting [13] by more complex models and ensembles. 

TABLE III.  ENSEMBLES 

(a) Ensemble, with voting for meta-classification  

 
 Votes 

Nginx  
(Baseline: 0.02) 
P            R            F 

Apache  
(Baseline: 0.01) 

P               R            F 

Wget ( 
Baseline: 0.02) 
P             R            F 

2 
4 
6 
8 
9 
10  

0.09 
0.20 
0.31 
0.75 
1.00 
0.00 

0.81 
0.71 
0.37 
0.09 
0.01 
0.00 

0.16 
0.31 
0.34 
0.16 
0.02 
NA 

0.02 
0.15 
0.29 
0.00 
0.00 
0.00 

0.80 
0.38 
0.03 
0.00 
0.00 
0.00 

0.04 
0.22 
0.05 
NA 
NA 
NA 

0.09 
0.31 
0.00 
0.00 
0.00 
0.00 

0.81 
0.27 
0.00 
0.00 
0.00 
0.00 

0.16 
0.29 
NA 
NA 
NA 
NA 

(b) Ensemble, with XGBoost meta-classifier 

 
 Votes 

Nginx 
(Baseline:0.02) 
P          R         F 

Apache 
(Baseline: 0.01) 
  P          R          F 

Wget  
(Baseline: 0.02) 
  P         R          F 

ALL 
Classifiers 

0.57 0.73 0.64 0.30 0.39 
 

0.34 
 

0.36 
 

0.11 0.17 
 

Only  
Decision Tree & 
Random Forest 

0.53 0.73 0.61 0.35 0.42 0.38 0.49 0.49 0.49 

 

3) Deep learning; automated machine learning 

     Finally we evaluated deep learning based classification for fault 
classification. We employed an automated machine learning (AML) framework 
where an AML framework automatically generates the “best” deep learning model 
through a neural architecture search over a large space of possible models. 
Specifically, we used Google Cloud AutoML Tables [13] where the very same 
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feature set and target class (commit fault = Y/N) is provided to the service for 
classification. Table IV provides these results. The results, shown for six datasets 
but representative of the overall trend, demonstrate that AutoML does not provide 
any improvement in fault classification accuracy over the better performing feature 
driven classifiers such as the Decision Tree. The results, while not obvious are not 
entirely surprising as well. Not all machine learning driven classification problems 
benefit (significantly) from deep learning algorithms. Plus the classifier framework 
effectiveness also depends on the features that are ultimately useful for 
classification – the topic of the next sub-section.  

TABLE IV.  AUTOMATED MACHINE LEARNING RESULTS 

 
Dataset 

Best In-house 
P      F        R 

AutoML 
P      F         R 

nginx 
apache 
curl 
wget 
videolan  
podofo 

0.59 
0.34 
0.21 
0.00 
0.43 
0.22 

0.74 
0.46 
0.22 
0.00 
0.43 
0.62 

0.66 
0.39 
0.22 
NA 
0.43 
0.32 

0.38 
0.14 
0.52 
0.00 
0.53 
0.33 

0.25 
0.04 
0.08 
0.00 
0.29 
0.33 

0.31 
0.06 
0.14 
NA 
0.38 
0.33 

 

For code risk assessment and at the commit level, this evaluation informs us that 
the deep learning approach provides no additional benefits. It is also a solution that 
is computationally and monetarily expensive.  

B. Explainability 

The above evaluation of various classifiers, ensemble configurations and automated 
services enabled us to hone in on the best classifier for the problem. In this case the 
XGBoost ensemble and also the Decision Tree (by itself) perform the bst. We are 
also interested in explaining the classification results. Explanation benefits include: 
(i) getting a better understanding of which specific factors (features) most influence 
code risk, and also those that do not. Knowledge of the most  influential factors can 
significantly help in optimizing the code review process. If we determine, say, that 
code faults are unusually more (or less) frequent during certain days of the week 
and/or certain hours of the day then one can prioritize code review towards (or 
against) commits for those days and/or hour windows in the day.  (ii) understanding 
why structurally relatively simpler classifiers like the Decision Tree are best suited 
for this problem   
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1) Feature importance 

Machine learning based classification frameworks provide capabilities for 
determining the relative importance of various features for certain kinds of 
classifiers on a specific classification task. Classifiers such as Decision Tree are 
constructed by a process of supervised segmentation [13] which is to segment a 
dataset considering one factor (feature) at each step. The feature selected at each 
step is based on maximizing the information gain that is achieved at that step [13]. 
In SciKit Learn, feature importance is a measure that is calculated as the decrease 
in node impurity weighted by the probability of reaching that node. The node 
probability can be calculated by the number of samples that reach the node, divided 
by the total number of samples. The higher the value the more important the feature. 
Functions for providing the feature importance are built into the SciKit framework.  

Table V provides the feature importance scores  extracted the Decision Tree 
classifier for our problem. The scores are illustrated for four (out of several) datasets 
and we only provide scores where the score is greater than zero (a feature 
importance score of zero for a feature implies that the feature has no influence on 
the classification/prediction whatsoever).  

TABLE V.  FEATURE IMPORTANCE (REPRESENTATIVE DATASETS) 

Feature importance Feature importance 
author_name                                    0.93816 
additions_count_commit               0.04141 
modifications_count_commit       0.01663 
deletions_count_commit               0.00041 

author_name                                  0.87569 
additions_count_commit           0.06819 
modifications_count_commit.  0.02683 
deletions_count_commit              0.01080 

committer_date_weekday                0.75268 
author_name                                         0.07270 
additions_count_commit                  0.05066 
committer_date_hour                         0.05057 
committer_name                                   0.04726 
deletions_count_commit                   0.00996 
modifications_count_commit         0.00590 

committer_date_hour                  0.61274 
modifications_count_commit   0.16359 
committer_name                             0.07454 
author_name                                      0.05906 
additions_count_commit             0.05896 
committer_email_type                  0.01382 
last_month_faulty_commits      0.00893 

 

The feature analysis reported in Table V reveals the following: 

1) The (code) developer (reflected as ‘author_name’) is, by far, the most 
significant influencing factor for faultiness ! 

2) The activity during a commit, reflected in the additions, modifications and 
deletions counts is the next most significant factor.  
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3) The hour of day (‘committer_date_hour’)  can at times be a very significant 

predictor of commit fault. 

2) Statistically assessing feature importance 

Another means of obtaining feature importance is to employ statistical analysis 
based on risk ratios [14] and odds ratios [14] of individual factors (attributes) 
associated with faults. The (faultiness) risk ratio of an attribute instance is simply 
the fraction of cases when that instance is associated with a fault. For instance if the 
faulty commits that developer ‘John Doe’ is associated with comprise 0.015% of 
the total number of commits (in the repository) then the risk ratio for ‘John Doe’ is 
0.015. If on average a developer’s faults comprise say 0.005% of the total commits 
then the odds-ratio for John Doe is 0.015/0.005=3.  

The feature importance, provided by classifiers as well statistical analysis shows 
that 1) ultimately, there are only a handful (6 or so) features that have some finite 
association with commit risk (classification). 2) Even within this small subset, the 
feature importance is skewed towards just 2 or 3 features,  such as the developer or 
committer (name). The fact that for this classification problem we have only a small 
number of influential features, and all discrete valued, explains why a supervised 
segmentation algorithm like the Decision Tree is well suited for the problem. 
Classifiers that are structurally more complex, such as say SVMs or deep learning 
multi-layer neural network classifiers are unable to extract further signal over the 
non-influential features (the majority), even with complex analysis over sets of such 
features.   

C. Risk Analysis for Real-world Software Development  

Our eventual goal is the realization of a working product that helps in efficient 
software code quality management in real settings. There are two dimensions that 
we added onto our analysis framework in this regard. The first is to factor risk ratios 
that come from statistical summaries of the data. The second is to evaluate the 
predictive power of the approach for future events where “future” is defined 
explicitly in the database. Our work is in the context of large software project 
repositories that evolve over a (typically) long period of time (multiple years). Any 
underlying hypothesis of this work is that the fault risk patterns determined at any 
point of time in the repository  are predictive of the future fault risk behavior in that 
repository (from that point of time on). The fault prediction analysis presented in 
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Tables 2,3,4 and 5 is based on general patterns where while the training set 
(commits) are distinct from the test (holdout) set commits, the training set commits 
do not necessarily all predate the test set commits !  

We now divide a dataset into train and holdout sets in a temporal fashion i.e., all 
train portion commits predate all test portion commits. Additionally, we are now in 
a position to define and incorporate features based on recent activity history from a 
certain time point. For instance features that are based on code commit  activity 
from the day(s), week(s), month(s) prior to the time of that commit. Table VI 
provides the additional, history based features that we have added to the space. 
These are divided into two categories. One category is that of  “regular” features 
such as the number of commits in the last day, week, month etc. The other category 
has features like the number of faulty commits in the last day, week, month etc.  

TABLE VI.  ADDITIONAL,  HISTORY BASED FEATURES 

History but no fault 
knowledge 

History including fault 
knowledge 

Commits in the past 
day/week/month 

Faulty commits in the past 
day/week/month 

Days since last commit Days since last faulty commit 
Daily variance Daily variance 

 

1) Results 

Table VII provides the results of the risk analysis with incorporating statistical risk 
ratios, history based features (additional), and ensuring that the train data portion 
completely predates the test data portion. Some key aspects: (i) The results are 
reported in terms of the factor improvement over brute force examination of 
Precision@100. (ii) Both schemes for risk identification, classifier based as well as 
statistical analysis are reported. For statistical analysis Table VII provides only the 
odds-ratio based results (being superior to risk-ratio based). (iii) The best classifier, 
the XGBoost ensemble, is employed with three different feature sets – no history 
based features, including history but without knowledge of which commit (in the 
history) was faulty, and then history with the knowledge of which commits in the 
history are faulty. 
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TABLE VII.  FAULTY DENSITY: FACTOR IMPROVEMENT 

 
 

Dataset 

Statistical 
Analysis: 
Odds 
ratio 

Classifier 
scheme  
no history 

Classifier with 
previous 
month history   

Classifier with 
activity history  but 
no fault knowledge  

apache 1 3 2  15 10 

apache 3 4 8 25 20 

apache 5 1 5 10 10 

i-magick1  1 2 6 10 

curl 1 5 3 5 5 

curl  3 4 0 10 10 

curl  5 1 3 7 7 

wget 1 1 1 1 1 

wget 3 0 3 5 5 

wget 5 1 1 3 3 

openssl 1 3 5 10 11 

openssl 3 13 0 8 16 

openssl 5 8 3 15 13 

nginx 1 5 5 10 10 

libraw 1 4 4 5 5 

libraw 5 3 5 6 6 

 

The Precision@100 factor improvement is summarized, for the various schemes, in 
terms of the mean, minimum and maximum factor improvement obtained with that 
scheme. We also provide the 68-95-99 distribution.   

Statistical analysis (odds-ratio based) 

Mean improvement factor = 3.8 ; Minimum = 0 ; Maximum = 13 

68-95-99.1: [0.6, 7]  [0,10.2]   [0,13.4] 
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Classifier (ensemble) no history 

Mean improvement factor = 3.2 ; Minimum = 0, Maximum = 8 

68-95-99.1: [1.25, 5.25] [0, 7.25] [0, 9.25] 

Classifier with history, NO fault knowledge 

Mean improvement factor = 8.9 ; Minimum = 1, Maximum = 20 

68-95-99.1: [4.2, 13.6]  [0, 18.3]  [0, 23.0] 

Classifier with history features, including fault knowledge 

Mean improvement factor = 8.9 ; Minimum = 1, Maximum = 25 

68-95-99.1: [3.2, 14.4] [0, 20.0]  [0, 25.4] 

We conclude that 1) The inclusion of history based features significantly improves 
the risk prediction accuracy, even without fault knowledge in the recent history in 
some cases.2) Overall, a significant average improvement of 9X is achieved for 
Precision@100, this is as high as 20-25X in some cases.  From a code inspection 
and review perspective these factor improvements translate directly to the potential 
savings in code examination for faults. In Table VIII we provide the feature 
importance analysis, with now also including the history based features that have 
been added.  

TABLE VIII.  FEATURE IMPORTANCE (HISTORY BASED FEATURES INCLUDED) 

Feature importance Feature importance 
author_name                                      0.93816 
additions_count_commit                  0.04141 
modifications_count_commit        0.01663 
last_month_commits                       0.00324 
deletions_count_commit                 0.00041 
last_month_faulty_commits            0.00014 

author_name                                      0.87569 
additions_count_commit             0.06819 
modifications_count_commit    0.02683 
last_month_commits                     0.01550 
deletions_count_commit             0.01080 
last_month_faulty_commits      0.00295 

committer_date_weekday               0.75268 
author_name                                    0.07270 
additions_count_commit                  0.05066 
committer_date_hour                      0.05057 
committer_name                             0.04726 
deletions_count_commit                  0.00996 
last_month_faulty_commits            0.00675 
modifications_count_commit        0.00590 
last_month_commits                       0.00325 

committer_date_hour                    0.61274 
modifications_count_commit    0.16359 
committer_name                              0.07454 
author_name                                     0.05906 
additions_count_commit              0.05896 
committer_email_type                   0.01382 
last_month_faulty_commits      0.00893 
deletions_count_commit             0.00447 
last_month_commits                     0.00390 
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D. Learning Curve Analysis 

We determined above the kind of improvement we can expect to achieve in the 
precision of finding faulty commits.   We now apply learning curve analysis [14] 
to determine what amount of training data is required for the classifier to achieve 
stability. Figure 1 provides the learning curves.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Learning curve: Precision     

 

 

 

 

 

 

 

b) Learning curve: Mean square error (MSE) 
             Figure 1. Learning curves 
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Here a) presents classifier accuracy as it varies with the training data size (number 
of commits in training set) and b) provides the mean-square-error (MSE) as a 
function of training set size. We employed the Decision Tree classifier for learning 
curve analysis and the results shown for the three datasets in Figure 3 are 
representative of the overall trend.  

We note from a) that the classifier precision plateaus at around 4000 commits in the 
training data, which we can take as an estimate of the amount of training data 
required for a stable risk predictor for any code base. From b) we observe that the 
“elbow” of the MSE appears to at around a training data size of 500 commits. 
However the error continues to decrease and stabilizes at around 4000 commits.   

V. RELATED WORK 

The area of software code risk analysis has many studied from many different 
perspectives (as described in the Discussion section) but it is only a handful of 
relatively recent work with a focus on developers and development behavior 
characteristics.  The work in [5] for instance contributes a new dimension for feature 
engineering for defect prediction. Traditionally, developer metrics such as their 
experience, coding skills, commit activities etc. are measured in a single snapshot. 
In these system these metrics are captured periodically, which enables capturing the 
change in developer behavior over time. The model for defect  has been evaluated 
on the Lucene and Jackrabbit open-source repositories. A number of supervised 
machine learning classifiers such as Random Forest, Naïve Bayes, Regression, J48 
Decision Trees etc. were evaluated. For test datasets with fault (commit) densities 
of 33-50% the system achieved commit fault classification accuracies in the range 
of 0.5-0.7 F1 score. [1] presents an approach to personalized defect prediction where 
a separate defection prediction model is developed for each developer. Defects are 
classified at the file change level and the system does so based on features in three 
main categories namely (i) code characteristic vectors  (ii) bag of words and (iii) 
metadata, such as hour , min and day of commit and also file path names etc.  This 
system was able to achieve a four-fold increase in bug detection compared to 
traditional change classification on inspecting the top 20% lines of code that are 
predicted buggy. The classification accuracy of classifying defects F1 is in the range 
of 0.59-0.74  on datasets where the percent of buggy changes (fault density) is 25-
30%. Finally, [10] is a patent on a technology for fault identification that factored 
in recent activity history in the analysis.  
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Our work is distinguished from the one above on the following key aspects: 1) We 
gave achieved a significant (10-fold) fault identification precision increase on 
repositories with much sparser faulty density – 1-2% in our case versus 25-30% in 
the works above. This was made possible with a) richer feature engineering, and b) 
investigating a more comprehensive space of potentially applicable machine 
learning paradigms for the problem. 2) Richer exploration and identification of 
recent activity history based features. The work in [10] is among the only to have 
employed some such history based features, we have explored this space more 
extensively, and identified some features highly correlated with fault risk. 3) Finally 
our curated database has data from repositories over several years of activity, this 
has enabled us to do a true “predict forward in time” analysis that earlier works have 
not provided.  

VI. CONCLUSIONS and FUTURE WORK 

We envision commit level risk identification being applied in practical software 
quality management in multiple ways. We could identify particular commits that 
are highly and that deserve review, and also identify regions of code (a set of 
commits from say a particular developer or in a particular time window) that should 
be reviewed. The feature importance analysis also provides cues on what particular 
developers, and particular file types should (or should not) be prioritized for 
examination.   

 The key new contributions from our investigation and system lie in two broad 
categories: 1) feature engineering,  where we have investigated some new kinds 
of features not previously explored,   and 2) machine learning classification, where 
our work is to the best of our knowledge the first to investigate the gamut of machine 
learning algorithms and paradigms comprehensively. Especially for data 
(repositories) where the fault density is sparse and thus harder to detect. In feature 
engineering we investigated some previously unexplored features such as specific 
code authors or committers (including distinguishing between author and 
committer), aspects of developers such as their (geographic) location, types of code 
files, treating the code itself as text and also semantically categorizing the temporal 
attributes (for instance placing hour of commit in buckets such as morning , evening, 
late night etc.). We also analyzed many recent history based features derived from 
the developer activity (commits) in time windows (days, weeks, months) before a 
commit.   In machine learning classification we investigated the effectiveness of 
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about a dozen different feature driven classifiers. This also included text based 
classifiers for certain features that were text to begin with (the commit message for 
instance) or features synthesized as text (set of tokens of folder names in the path to 
a file for instance). We then evaluated ensembles of these multiple classifiers, with 
exploring multiple algorithms for the ensemble assembly. Finally,  we have 
investigated the use of deep learning classifiers, including automated machine 
learning frameworks with evaluating our fault identification task on Google Cloud 
AutoML. The evaluation on a wide variety of machine learning frameworks and 
with over 60 datasets allowed us to conclude that ultimately only a rather small 
number of factors or features, and with discrete values, have some association with 
commit fault risk. A supervised segmentation algorithm such as a Decision Tree is 
this well suited for the risk classification problem. Over datasets with a very sparse 
(1-3%) distribution of code faults, we have achieved a fault identification precision 
improvement of about 10-fold on average and as much as 20-fold in some cases.  

The conclusions from this investigation, development of the fault risk assessment 
pipeline, and experimental evaluation all center on the key takeaway that a machine 
learning classification based approach and system for predicting faulty commits is 
effective. At a more specific level we learnt several aspects, namely: 

1) From amongst a spectrum of machine learning classification approaches and 
frameworks evaluated, a “simple” feature driven Decision Tree classifier had 
the best performance. This is compared to other feature driven classifiers (such 
as Random Forests, SVMs etc.), ensembles of such classifiers, and even deep 
learning frameworks (AutoML).  

2) Only a very small set of features seem influential for faulty commit prediction, 
based on our feature importance analysis of a very wide spectrum of features 
evaluated. 

3) Factoring information of very recent development activity on the repository 
(from the last few days, weeks and months) significantly improves fault 
prediction capabilities. By factoring features based on recent history we were 
able to achieve an average of 10-fold improvement in fault prediction (over 
brute force examination), and it was as high as 20-fold for certain repositories 
evaluated.  

4) The approach has the potential to be effective in a real-world setting  for 
predicting fault in new code commits, based on the analysis of the prior 
(commit) activity in that repository. Stable predictions appear to require a 
training data size (of prior commits data) of about 4000 commits.   
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Overall, this effort has resulted in an approach and system that is effective in fault 
risk prediction and has also provided us with a confident understanding of the limits 
(prediction accuracies possible) in such a task. This forms a foundation for a tool 
that we are building for software developers and software project managers that can 
employ data for improving the quality of their code as well as the efficiency of the 
development process. 
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