
Assessing Software Fault Risk with
Machine Learning

Naveen Ashish, Greg Barish and Steven Minton

Abstract: This paper presents a data-driven solution for assessing fault (defect) risk
in software code. Our particular interest is in code bases of large software projects
(including open-source projects) that involve multiple developers, and where the
project code base evolves over an extended period of time (multiple years). Our
goal is to predict fault risk at the level of code check-in episodes, where individual
commits are assessed for risk. Our solution predicts code risk by analyzing a rich
variety of data that has been aggregated about software engineering development
behavior. It is powered primarily by machine learning. A central aspect of this work
is on determining the most effective machine learning algorithm(s) for this
problem, after a comprehensive investigation of a wide variety of algorithms and
frameworks. The resulting system is effective in predicting risk code commits in
repositories with a very sparse code fault density (1-3%). We are able to achieve an
average of 10-fold improvement in the precision (Precision@100) of identifying
faulty commits, and an as high as 20-fold improvement in some cases. The
improved efficiency in identifying risky code translates directly to expected
improvement in efficiency (reduction of time and effort) for code review.

Keywords: software quality, code review, fault detection, machine learning, code
risk assessment, artificial intelligence

Naveen Ashish
InferLink Corporation
El Segundo, USA
nashish@inferlink.com

Greg Barish
InferLink Corporation
El Segundo, USA
gbarish@inferlink.com

Steven Minton
InferLink Corporation
El Segundo, USA
sminton@inferlink.com

2

I. INTRODUCTION

Maintaining large software repositories, especially those that involve multiple
developers and evolve over a long period of time (years), is a challenge [8]. The
ability to identify risky code, as it is checked in, would be of significant value from
a software quality perspective. By risky code we mean portions of code (checked
in) that are likely to result in a fault in the future in that repository. A fault is an
error or “bug” in software that cause the software to behave in a manner different
and unwanted from as designed (and intended). This paper presents our work on
developing an approach for efficiently identifying code fault risk in such large
software project code bases. One of the key novel aspects of the research has been
to investigate how the behavior of developers - in the context of software
development, bears upon the quality of the software code.

Our approach is data centric, where we leverage a variety of dynamically aggregated
data for predicting code fault risk. This work focuses on the machine learning details
of CodeFault [15], a system for automatically identifying software risk based on
engineering behavior. CodeFault aggregates data from multiple sources associated
with a particular software repository of interest, uses a novel approach to markup
faults, and leverages machine learning and code-as-document techniques [11] to
predict commits of risk based on patterns mined from this combined data set.

We have modeled the problem as a classification problem i.e., where individual
code commits are classified for fault risk. The application of this (originally)
commit level risk assessment for practical software quality management, is
discussed ahead in the paper. Our solution achieves an (on-average) 10-fold
increase in the precision of faulty commit identification - compared to an exhaustive
search or examination of random subsets of commits for faults. Additionally, we
are able to identify the primary factors that do (and do not) influence software
quality in terms of code fault risk. The aggregated data, the basis of our data-driven
approach, includes 1) data related to development behavior i.e., the behavior of
individual developers’, and 2) data about software vulnerabilities which is
employed to learn behavioral patterns associated with faulty code. Code risk in a
new (unseen) software project can then be assessed based on the patterns that
emerge from analysis of the integrated database (which has prior data).

This paper is organized as follows. Section 2 is a discussion summary on code risk
assessment, in general. Section 3 starts with a brief summary of the database

3

curation, and then describes the feature engineering for machine learning done over
this data. We also introduce the machine learning paradigms investigated. In
Section 4 we summarize the key conclusions from the investigation, namely (i) The
most effective machine learning approach (algorithm) for this problem. (ii)
Explaining the machine learning in terms of the specific most influencing factors
we uncovered that are associated with code fault risk. (iii) The configuration and
parameters for training as well as operating such a code risk prediction system in a
real-world and dynamically evolving software repository environment. Section 5
discusses related work on code risk assessment. This has been an area of
investigation for decades but human behavioral aspects have been relatively
unexplored. Finally Section 6 provides a conclusion and directions for future work.

II. DISCUSSION

Software vulnerability has been investigated at various levels, such as identifying
vulnerable regions (defined by specific range of lines of code), specific modules
that are vulnerable, vulnerable files, a more granular identification at the level of
individual code changes and commits [1]. The work in [2] is a first of its kind
empirical study to determine the characteristics of vulnerable code changes, and in
particular the characteristics of developers likely to introduce code vulnerabilities.
The study uncovered interesting insights, for instance the more experienced
developers authored the majority of the vulnerabilities but changes by less
experienced developers were 2-24 times more likely to inject vulnerabilities. The
likelihood of a vulnerability being introduced increases with number of lines of code
changed. The code author experience and author’s (place of) employment were also
found to have an influence on the propensity of vulnerability injection. VCCFinder
[3] is a system that identifies commits in a repository that are likely to introduce
defects. The system does this on the basis of features related to the code commit
activity and aspects of the developers. It also factors text based features, coming
from developer comments. VCCFinder was developed based on datasets from
Github where (known) CVEs were mapped to Github commits. An SVM is trained
to then classify faulty commits based on (i) repository associated features, namely
the total number of commits and the number of developers for that repository. (ii)
commit associated features such as the number of additions, deletions and also the
number of commit hunks. (iii) the commit message, treated as free text (iv)
functions in the code (v) keywords (from the code programming language). The
system uncovered interesting patterns such as new developers being more likely to

4

introduce defects. Or, commits over code that has been iterated over frequently,
including by multiple developers, are more likely to inject faults.

The work of [5] contributes a new dimension for feature engineering for defect
prediction. Traditionally, developer metrics such as their experience, coding skills,
commit activities etc. are measured in a single snapshot. In these system these
metrics are captured periodically, which enables capturing the change in developer
behavior over time. The model for defect has been evaluated on the Lucene and
Jackrabbit open-source repositories. A number of supervised machine learning
classifiers such as Random Forest, Naïve Bayes, Regression, J48 Decision Trees
etc. were evaluated. For test datasets with fault (commit) densities of 33-50% the
system achieved commit fault classification accuracies in the range of 0.5-0.7 F1
score. [1] presents an approach to personalized defect prediction where a separate
defection prediction model is developed for each developer. Defects are classified
at the file change level and the system does so based on features in three main
categories namely (i) code characteristic vectors (ii) bag of words and (iii)
metadata, such as hour , min and day of commit and also file path names etc. This
system was able to achieve a four-fold increase in bug detection compared to
traditional change classification on inspecting the top 20% lines of code that are
predicted buggy. The classification accuracy of classifying defects F1 is in the range
of 0.59-0.74 on datasets where the percent of buggy changes (fault density) is 25-
30%.

III. APPROACH

We describe 1) feature engineering over the data and 2) the machine learning
investigation in this section.

A. Feature Engineering

The aggregated database is assembled over data coming from open-source software
repositories (such as GitHub), publicly available databases, and profiles of software
developers on open Internet forums and social-media. It is collected using a
combination of API access, web scraping, and git-style data collection scripts. This
database also has information on whether each individual commit is faulty, or not.
The fault/no-fault labeling was obtained by first identifying commits that indicated
a fix and then selectively working backwards to identify which prior commits

5

introduced code that was removed as part of the fix, using detailed techniques
described in [15].

The aggregated database has data which is structured but we need to further
synthesize features from this data, to then feed into the machine learning algorithms
investigated. We considered the various aspects that can potentially influence code
faultiness, and determined three distinct categories of potentially influencing
features. The categories relate to properties of particular commits, those of
developers, and those of the code.

Commit oriented features are aspects of an individual commit itself. The features
include 1) aspects of commit activity, such as modifications, additions, deletions
counts associated the commit. Each of the counts becomes a commit related feature.
2) temporal aspects, starting with date (time) stamp of the commit and including
derived features such as the hour of the day and the day of the week of that commit.
4) commit description, such as the commit message provided with the commit

Developer oriented features are features related to software developers associated
with a code repository (as authors) or associated with particular commits in the
code. These include 1) the developer identity and associated attributes such as their
login ID, name, employer, location etc. 2) developer reputation, in measures
(attributes) such as star ratings, number of “likes” (on their repository, profile etc.).
3) developer knowledge and skills such as their set of programming languages etc.

Code oriented features which are features of the code files associated with the
commit. Such as the folder path details of a code file, file extension type etc.

Table I provides the specific features that are extracted or synthesized from the
analysis database. These features are in three categories, (a) developer oriented
features, (b) commit oriented features and (c) (code) file oriented features.

TABLE I. FEATURES FROM THE ANALYSIS DATABASE

(a) Commit oriented features

Feature Description Example

ID Commit identifier 12345
Commit SHA Commit hash identifier 2acee567eed8889f7ae

6

Commit message The text description included as

commit documentation
'Updated PCRE used
for win32 builds.'

Modifications
count

Modifications in a commit 45

Additions count Additions in a commit 32

Deletions count Deletions in a commit 39

Author name,
login, ID

Code author name, login, and
identifier

John Smith,
Jsmith123, 4563

Author email Code author email jsmith@microsoft.com

Committer name,
login, ID

Code committer name, login,
and identifier

Mike Foster, mfoster,
3322

Commit date
Hour of day*
Day of week*

Date stamp of the commit. Note
that (the commit) ‘hour of day’
and ‘day of week’ are derived
from the commit date stamp

'2019-04-24 13:38:51'
13
Friday

(b) Developer oriented features

Feature Description Example

ID (Unique) developer identifier 1222

login Developer login name JSmith123

avatar_url Profile URL Github.com/JSmith123

Company Organization affiliated with Microsoft

Blog Developer has a blog (Y/N) Y

Location Geolocation if given Seattle

Email Email address jsmith@microsoft.com

Hireable Hireable (Y/N) N

Bio Developer bio (if any)

Public repos
count

Count of developer’s
repositories

73

Public gists count Count of developer’s gists 4

Followers count Count of followers 35

Following count Count of people followed 22

7

(c) Code oriented features

Feature Description Example

ID File identifier 8
Commit meta ID Associated commit

identifier
2

File path Directory path to the file src/main/scripts/
proxy_module.java

Status File modified modified

Modification, additions,
deletions

Activity counts 23, 17, 4

Path 1* Root folder name src
Path 2* File name proxy_module
Ext File extension “java”

Path as text Path folder names “src main scripts
proxy_module”

Deleted code return

X+","+wordLength(str)+

","+endsNumber(str)+","

+

hasYesNo(str)+","+

charFractions(str);

We have above 14 commit oriented features, 11 developer oriented features and 10
code oriented features – a total of 35 features in the feature vector associated with a
commit.

B. Fault Risk Prediction: Machine Learning Classification

The fundamental problem is that of predicting whether a commit will result in a
fault or not. However, and as with most predictive analysis goals, rather than a
binary Y/N of whether the commit will be faulty we want the probabilistic
likelihood of a commit being faulty. The likelihood translates directly to the commit
risk. The aggregated database contains the fault status of each individual commit –
essentially the target class in our classification problem. Thus supervised learning
based classification [13] becomes feasible.

The classification problem is formulated at a commit level. The goal is, for new data
(i.e., commits), to assign a quantitative faultiness likelihood to the commit. This
likelihood is simply the probabilistic likelihood that the commit belongs to the
fault=Y class, by any classifier.

8

We have investigated three different paradigms (and associated frameworks):

1) Feature driven classifiers These are “traditional” classifiers that work off
synthesized features (the features provided in Table I). The options are
classifiers such as Decision Tree [9], SVM [9], Random Forest [9] and many
others that are available in commonly used machine learning frameworks. Here
we also treat certain fields of data as unstructured text. Then, text classifiers,
that are somewhat different from the discrete feature driven classifiers (such as
Decision Tree, SVM etc.) are employed over these text fields to predict fault
risk.

2) Ensembles over multiple classifiers In simple terms, a classifier ensemble is
akin to a committee of experts, where the opinion of multiple experts is taken
into account [9]. In this case we assembled and evaluated a variety of classifier
ensembles.

3) Deep learning classifiers These are classifiers in the unsupervised feature
learning category where the system itself learns the features to be employed.
The deep learning classifiers i employ multiple layers of neural networks to
perform the classification. Rather than developing custom deep learning
models ourselves we use cloud based automated machine learning [12]
frameworks where the (deep learning based) models are assembled
automatically. This is done using techniques such as neural architecture search
(NAS) [12]. The cloud automated machine learning services also provide the
high end computational resources that deep learning approaches typically
require.

IV. EVALUATION

As mentioned above, our goal was to arrive at an efficient code risk assessment
solution after a comprehensive exploration of various machine learning algorithms
and frameworks. By efficient risk assessment we mean finding the maximum
amount of risky code commits with the least effort. An inefficient approach would
be (i) Exhaustively examining all code commits in a repository – this is practically
infeasible in large code bases. (ii) Examining randomly sampled subsets of code
commits with the hope of finding risky commits. We refer to this approach as the
brute force approach. The overall goal is to then apply an efficient approach in a
production setting of a large software repository development.

9

The evaluation progressed as follows. We first evaluated a wide spectrum of feature
driven classifiers with features of different kinds. We then extended that analysis to
ensembles of multiple different classifiers, including embeddings-based text
classifier. We further evaluated the same (commit fault) classification task with the
same feature set on a deep learning automated machine learning framework.
Orthogonally, we a) investigated the explainability of the approach in terms of
determining which factors do (or do not) bear upon fault risk, and b) conducted a
learning curve analysis to establish the limits of fault risk prediction accuracy that
can be achieved with such data and characterize the amount of data (number of
commits) required for good predictions. We present the results of these evaluations,
in the above order.

A. Classification

There are three facets of the classification approach – individual classifiers,
ensembles of multiple classifiers, and deep learning using automated machine
learning services.

1) Feature Driven Classification

We started by evaluating individual feature driven classifiers, such as Decision
Tree, Random Forest, Naïve Bayes , Support Vector Machine (SVM) and others. In
this project we employed the SciKit Learn machine learning framework in Python
[13], that provides a wide spectrum of machine learning algorithm implementation
as well as accompanying data manipulation utilities. In Table II we provide
experimental results on the accuracy of (ten) individual feature-driven classifiers
for classifying commit faultiness. Given space constraints, results are provided for
only 3 of the (over) 60 datasets we have conducted the evaluation on. The results
presented are representative of the entire dataset. Note: P=Precision, R=Recall and
F=F-Measure in the tables hereon.

10

TABLE II. INDIVIDUAL, FEATURE DRIVEN CLASSIFIERS

Classifier

Nginx
(Baseline: 0.02)
P R F

Apache
(Baseline: 0.01)

P R F

Wget
(Baseline: 0.02)
P R F

Random Forest
Decision Tree
AdaBoost
Naïve Bayes
SVM
QDA
KNN
Message text
File tokens
Code snippets

0.11
0.59
0.09
0.20
0.00
0.19
0.10
0.12
0.05
0.08

0.79
0.74
0.71
0.36
0.00
0.37
0.20
0.40
0.84
0.14

0.19
0.66
0.16
0.26
NA
0.25
0.13
0.18
0.09
0.10

0.03
0.34
0.01
0.03
0.00
0.03
0.00
0.07
0.02
0.02

0.74
0.46
0.56
0.07
0.00
0.09
0.00
0.19
0.74
0.05

0.06
0.39
0.02
0.04
NA
0.04
NA
0.10
0.04
0.03

0.09
0.31
0.00
0.00
0.00
0.00
0.03
0.12
0.03
0.29

0.81
0.27
0.00
0.00
0.00
0.00
0.08
0.11
0.43
0.05

0.16
0.29
NA
NA
NA
NA
0.04
0.11
0.06
0.09

The (representative) results in Table II provide several important insights, which
include:

1. We observe a rather high variance in the classification accuracy across
different types of classifiers. For instance the precision ranges from 0 (for
SVM) to as high as 0.59 (for the Decision Tree classifier and for the nginx
dataset).

2. For effective classifiers, such as the Decision Tree, the fault classification
precision is high, relative to the precision achieved with brute force random
sampling examination (the repository fault density essentially). This classifier
is able to achieve a precision of 0.59 for nginx where the fault density is 0.02
i.e. a 30X improvement is achieved in fault identification. A similar 25-30X
precision improvement is observed for the apache and wget datasets as well.

3. The three text data driven classifiers (over the commit message, file path as
text, and code snippets as text) are able to achieve a moderately high precision
improvement as well – a 5-10X improvement over the brute force examination
precision.

2) Ensembles

We next evaluated ensembles of multiple classifiers. A classifier ensemble is a
“meta-classifier” [13] that is a classifier on top of other individual classifiers with
the output of the latter treated as features of the meta classifier. Table III provides
the results of ensemble evaluation with two different meta classification schemes.
As above, results are reported for only a small subset of datasets evaluated but are
representative of the findings in all datasets.

11

In the ensembles results, we do not see any merits of a voting based ensemble. The
ensemble accuracies are inferior to the best individual classifier (Decision Tree)
accuracies in terms of precision as well as F-score. The XGBoost driven ensemble
is however significantly better than the voting based ensemble. It does well when
taking an ensemble of all the (ten) individual classifiers as well as when taking an
ensemble of only the top two classifiers – Decision Tree (DT) and Random Forest
(RF). Nevertheless its notable that the accuracy of the individual Decision Tree
classifier stands better than any ensemble, even with XGBoost – we attribute this to
possible over-fitting [13] by more complex models and ensembles.

TABLE III. ENSEMBLES

(a) Ensemble, with voting for meta-classification

 Votes

Nginx
(Baseline: 0.02)
P R F

Apache
(Baseline: 0.01)

P R F

Wget (
Baseline: 0.02)
P R F

2
4
6
8
9
10

0.09
0.20
0.31
0.75
1.00
0.00

0.81
0.71
0.37
0.09
0.01
0.00

0.16
0.31
0.34
0.16
0.02
NA

0.02
0.15
0.29
0.00
0.00
0.00

0.80
0.38
0.03
0.00
0.00
0.00

0.04
0.22
0.05
NA
NA
NA

0.09
0.31
0.00
0.00
0.00
0.00

0.81
0.27
0.00
0.00
0.00
0.00

0.16
0.29
NA
NA
NA
NA

(b) Ensemble, with XGBoost meta-classifier

 Votes

Nginx
(Baseline:0.02)
P R F

Apache
(Baseline: 0.01)
 P R F

Wget
(Baseline: 0.02)
 P R F

ALL
Classifiers

0.57 0.73 0.64 0.30 0.39

0.34

0.36

0.11 0.17

Only
Decision Tree &
Random Forest

0.53 0.73 0.61 0.35 0.42 0.38 0.49 0.49 0.49

3) Deep learning; automated machine learning

 Finally we evaluated deep learning based classification for fault
classification. We employed an automated machine learning (AML) framework
where an AML framework automatically generates the “best” deep learning model
through a neural architecture search over a large space of possible models.
Specifically, we used Google Cloud AutoML Tables [13] where the very same

12

feature set and target class (commit fault = Y/N) is provided to the service for
classification. Table IV provides these results. The results, shown for six datasets
but representative of the overall trend, demonstrate that AutoML does not provide
any improvement in fault classification accuracy over the better performing feature
driven classifiers such as the Decision Tree. The results, while not obvious are not
entirely surprising as well. Not all machine learning driven classification problems
benefit (significantly) from deep learning algorithms. Plus the classifier framework
effectiveness also depends on the features that are ultimately useful for
classification – the topic of the next sub-section.

TABLE IV. AUTOMATED MACHINE LEARNING RESULTS

Dataset

Best In-house
P F R

AutoML
P F R

nginx
apache
curl
wget
videolan
podofo

0.59
0.34
0.21
0.00
0.43
0.22

0.74
0.46
0.22
0.00
0.43
0.62

0.66
0.39
0.22
NA
0.43
0.32

0.38
0.14
0.52
0.00
0.53
0.33

0.25
0.04
0.08
0.00
0.29
0.33

0.31
0.06
0.14
NA
0.38
0.33

For code risk assessment and at the commit level, this evaluation informs us that
the deep learning approach provides no additional benefits. It is also a solution that
is computationally and monetarily expensive.

B. Explainability

The above evaluation of various classifiers, ensemble configurations and automated
services enabled us to hone in on the best classifier for the problem. In this case the
XGBoost ensemble and also the Decision Tree (by itself) perform the bst. We are
also interested in explaining the classification results. Explanation benefits include:
(i) getting a better understanding of which specific factors (features) most influence
code risk, and also those that do not. Knowledge of the most influential factors can
significantly help in optimizing the code review process. If we determine, say, that
code faults are unusually more (or less) frequent during certain days of the week
and/or certain hours of the day then one can prioritize code review towards (or
against) commits for those days and/or hour windows in the day. (ii) understanding
why structurally relatively simpler classifiers like the Decision Tree are best suited
for this problem

13

1) Feature importance

Machine learning based classification frameworks provide capabilities for
determining the relative importance of various features for certain kinds of
classifiers on a specific classification task. Classifiers such as Decision Tree are
constructed by a process of supervised segmentation [13] which is to segment a
dataset considering one factor (feature) at each step. The feature selected at each
step is based on maximizing the information gain that is achieved at that step [13].
In SciKit Learn, feature importance is a measure that is calculated as the decrease
in node impurity weighted by the probability of reaching that node. The node
probability can be calculated by the number of samples that reach the node, divided
by the total number of samples. The higher the value the more important the feature.
Functions for providing the feature importance are built into the SciKit framework.

Table V provides the feature importance scores extracted the Decision Tree
classifier for our problem. The scores are illustrated for four (out of several) datasets
and we only provide scores where the score is greater than zero (a feature
importance score of zero for a feature implies that the feature has no influence on
the classification/prediction whatsoever).

TABLE V. FEATURE IMPORTANCE (REPRESENTATIVE DATASETS)

Feature importance Feature importance
author_name 0.93816
additions_count_commit 0.04141
modifications_count_commit 0.01663
deletions_count_commit 0.00041

author_name 0.87569
additions_count_commit 0.06819
modifications_count_commit. 0.02683
deletions_count_commit 0.01080

committer_date_weekday 0.75268
author_name 0.07270
additions_count_commit 0.05066
committer_date_hour 0.05057
committer_name 0.04726
deletions_count_commit 0.00996
modifications_count_commit 0.00590

committer_date_hour 0.61274
modifications_count_commit 0.16359
committer_name 0.07454
author_name 0.05906
additions_count_commit 0.05896
committer_email_type 0.01382
last_month_faulty_commits 0.00893

The feature analysis reported in Table V reveals the following:

1) The (code) developer (reflected as ‘author_name’) is, by far, the most
significant influencing factor for faultiness !

2) The activity during a commit, reflected in the additions, modifications and
deletions counts is the next most significant factor.

14

3) The hour of day (‘committer_date_hour’) can at times be a very significant

predictor of commit fault.

2) Statistically assessing feature importance

Another means of obtaining feature importance is to employ statistical analysis
based on risk ratios [14] and odds ratios [14] of individual factors (attributes)
associated with faults. The (faultiness) risk ratio of an attribute instance is simply
the fraction of cases when that instance is associated with a fault. For instance if the
faulty commits that developer ‘John Doe’ is associated with comprise 0.015% of
the total number of commits (in the repository) then the risk ratio for ‘John Doe’ is
0.015. If on average a developer’s faults comprise say 0.005% of the total commits
then the odds-ratio for John Doe is 0.015/0.005=3.

The feature importance, provided by classifiers as well statistical analysis shows
that 1) ultimately, there are only a handful (6 or so) features that have some finite
association with commit risk (classification). 2) Even within this small subset, the
feature importance is skewed towards just 2 or 3 features, such as the developer or
committer (name). The fact that for this classification problem we have only a small
number of influential features, and all discrete valued, explains why a supervised
segmentation algorithm like the Decision Tree is well suited for the problem.
Classifiers that are structurally more complex, such as say SVMs or deep learning
multi-layer neural network classifiers are unable to extract further signal over the
non-influential features (the majority), even with complex analysis over sets of such
features.

C. Risk Analysis for Real-world Software Development

Our eventual goal is the realization of a working product that helps in efficient
software code quality management in real settings. There are two dimensions that
we added onto our analysis framework in this regard. The first is to factor risk ratios
that come from statistical summaries of the data. The second is to evaluate the
predictive power of the approach for future events where “future” is defined
explicitly in the database. Our work is in the context of large software project
repositories that evolve over a (typically) long period of time (multiple years). Any
underlying hypothesis of this work is that the fault risk patterns determined at any
point of time in the repository are predictive of the future fault risk behavior in that
repository (from that point of time on). The fault prediction analysis presented in

15

Tables 2,3,4 and 5 is based on general patterns where while the training set
(commits) are distinct from the test (holdout) set commits, the training set commits
do not necessarily all predate the test set commits !

We now divide a dataset into train and holdout sets in a temporal fashion i.e., all
train portion commits predate all test portion commits. Additionally, we are now in
a position to define and incorporate features based on recent activity history from a
certain time point. For instance features that are based on code commit activity
from the day(s), week(s), month(s) prior to the time of that commit. Table VI
provides the additional, history based features that we have added to the space.
These are divided into two categories. One category is that of “regular” features
such as the number of commits in the last day, week, month etc. The other category
has features like the number of faulty commits in the last day, week, month etc.

TABLE VI. ADDITIONAL, HISTORY BASED FEATURES

History but no fault
knowledge

History including fault
knowledge

Commits in the past
day/week/month

Faulty commits in the past
day/week/month

Days since last commit Days since last faulty commit
Daily variance Daily variance

1) Results

Table VII provides the results of the risk analysis with incorporating statistical risk
ratios, history based features (additional), and ensuring that the train data portion
completely predates the test data portion. Some key aspects: (i) The results are
reported in terms of the factor improvement over brute force examination of
Precision@100. (ii) Both schemes for risk identification, classifier based as well as
statistical analysis are reported. For statistical analysis Table VII provides only the
odds-ratio based results (being superior to risk-ratio based). (iii) The best classifier,
the XGBoost ensemble, is employed with three different feature sets – no history
based features, including history but without knowledge of which commit (in the
history) was faulty, and then history with the knowledge of which commits in the
history are faulty.

16

TABLE VII. FAULTY DENSITY: FACTOR IMPROVEMENT

Dataset

Statistical
Analysis:
Odds
ratio

Classifier
scheme
no history

Classifier with
previous
month history

Classifier with
activity history but
no fault knowledge

apache 1 3 2 15 10

apache 3 4 8 25 20

apache 5 1 5 10 10

i-magick1 1 2 6 10

curl 1 5 3 5 5

curl 3 4 0 10 10

curl 5 1 3 7 7

wget 1 1 1 1 1

wget 3 0 3 5 5

wget 5 1 1 3 3

openssl 1 3 5 10 11

openssl 3 13 0 8 16

openssl 5 8 3 15 13

nginx 1 5 5 10 10

libraw 1 4 4 5 5

libraw 5 3 5 6 6

The Precision@100 factor improvement is summarized, for the various schemes, in
terms of the mean, minimum and maximum factor improvement obtained with that
scheme. We also provide the 68-95-99 distribution.

Statistical analysis (odds-ratio based)

Mean improvement factor = 3.8 ; Minimum = 0 ; Maximum = 13

68-95-99.1: [0.6, 7] [0,10.2] [0,13.4]

17

Classifier (ensemble) no history

Mean improvement factor = 3.2 ; Minimum = 0, Maximum = 8

68-95-99.1: [1.25, 5.25] [0, 7.25] [0, 9.25]

Classifier with history, NO fault knowledge

Mean improvement factor = 8.9 ; Minimum = 1, Maximum = 20

68-95-99.1: [4.2, 13.6] [0, 18.3] [0, 23.0]

Classifier with history features, including fault knowledge

Mean improvement factor = 8.9 ; Minimum = 1, Maximum = 25

68-95-99.1: [3.2, 14.4] [0, 20.0] [0, 25.4]

We conclude that 1) The inclusion of history based features significantly improves
the risk prediction accuracy, even without fault knowledge in the recent history in
some cases.2) Overall, a significant average improvement of 9X is achieved for
Precision@100, this is as high as 20-25X in some cases. From a code inspection
and review perspective these factor improvements translate directly to the potential
savings in code examination for faults. In Table VIII we provide the feature
importance analysis, with now also including the history based features that have
been added.

TABLE VIII. FEATURE IMPORTANCE (HISTORY BASED FEATURES INCLUDED)

Feature importance Feature importance
author_name 0.93816
additions_count_commit 0.04141
modifications_count_commit 0.01663
last_month_commits 0.00324
deletions_count_commit 0.00041
last_month_faulty_commits 0.00014

author_name 0.87569
additions_count_commit 0.06819
modifications_count_commit 0.02683
last_month_commits 0.01550
deletions_count_commit 0.01080
last_month_faulty_commits 0.00295

committer_date_weekday 0.75268
author_name 0.07270
additions_count_commit 0.05066
committer_date_hour 0.05057
committer_name 0.04726
deletions_count_commit 0.00996
last_month_faulty_commits 0.00675
modifications_count_commit 0.00590
last_month_commits 0.00325

committer_date_hour 0.61274
modifications_count_commit 0.16359
committer_name 0.07454
author_name 0.05906
additions_count_commit 0.05896
committer_email_type 0.01382
last_month_faulty_commits 0.00893
deletions_count_commit 0.00447
last_month_commits 0.00390

18

D. Learning Curve Analysis

We determined above the kind of improvement we can expect to achieve in the
precision of finding faulty commits. We now apply learning curve analysis [14]
to determine what amount of training data is required for the classifier to achieve
stability. Figure 1 provides the learning curves.

a) Learning curve: Precision

b) Learning curve: Mean square error (MSE)
 Figure 1. Learning curves

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

Er
ro

r (
M

SE
)

Training set size (number of commits)

nginx apache wget

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000 5000

Pr
ec

isi
on

Training set size (number of commits)
nginx apache wget

19

Here a) presents classifier accuracy as it varies with the training data size (number
of commits in training set) and b) provides the mean-square-error (MSE) as a
function of training set size. We employed the Decision Tree classifier for learning
curve analysis and the results shown for the three datasets in Figure 3 are
representative of the overall trend.

We note from a) that the classifier precision plateaus at around 4000 commits in the
training data, which we can take as an estimate of the amount of training data
required for a stable risk predictor for any code base. From b) we observe that the
“elbow” of the MSE appears to at around a training data size of 500 commits.
However the error continues to decrease and stabilizes at around 4000 commits.

V. RELATED WORK

The area of software code risk analysis has many studied from many different
perspectives (as described in the Discussion section) but it is only a handful of
relatively recent work with a focus on developers and development behavior
characteristics. The work in [5] for instance contributes a new dimension for feature
engineering for defect prediction. Traditionally, developer metrics such as their
experience, coding skills, commit activities etc. are measured in a single snapshot.
In these system these metrics are captured periodically, which enables capturing the
change in developer behavior over time. The model for defect has been evaluated
on the Lucene and Jackrabbit open-source repositories. A number of supervised
machine learning classifiers such as Random Forest, Naïve Bayes, Regression, J48
Decision Trees etc. were evaluated. For test datasets with fault (commit) densities
of 33-50% the system achieved commit fault classification accuracies in the range
of 0.5-0.7 F1 score. [1] presents an approach to personalized defect prediction where
a separate defection prediction model is developed for each developer. Defects are
classified at the file change level and the system does so based on features in three
main categories namely (i) code characteristic vectors (ii) bag of words and (iii)
metadata, such as hour , min and day of commit and also file path names etc. This
system was able to achieve a four-fold increase in bug detection compared to
traditional change classification on inspecting the top 20% lines of code that are
predicted buggy. The classification accuracy of classifying defects F1 is in the range
of 0.59-0.74 on datasets where the percent of buggy changes (fault density) is 25-
30%. Finally, [10] is a patent on a technology for fault identification that factored
in recent activity history in the analysis.

20

Our work is distinguished from the one above on the following key aspects: 1) We
gave achieved a significant (10-fold) fault identification precision increase on
repositories with much sparser faulty density – 1-2% in our case versus 25-30% in
the works above. This was made possible with a) richer feature engineering, and b)
investigating a more comprehensive space of potentially applicable machine
learning paradigms for the problem. 2) Richer exploration and identification of
recent activity history based features. The work in [10] is among the only to have
employed some such history based features, we have explored this space more
extensively, and identified some features highly correlated with fault risk. 3) Finally
our curated database has data from repositories over several years of activity, this
has enabled us to do a true “predict forward in time” analysis that earlier works have
not provided.

VI. CONCLUSIONS and FUTURE WORK

We envision commit level risk identification being applied in practical software
quality management in multiple ways. We could identify particular commits that
are highly and that deserve review, and also identify regions of code (a set of
commits from say a particular developer or in a particular time window) that should
be reviewed. The feature importance analysis also provides cues on what particular
developers, and particular file types should (or should not) be prioritized for
examination.

 The key new contributions from our investigation and system lie in two broad
categories: 1) feature engineering, where we have investigated some new kinds
of features not previously explored, and 2) machine learning classification, where
our work is to the best of our knowledge the first to investigate the gamut of machine
learning algorithms and paradigms comprehensively. Especially for data
(repositories) where the fault density is sparse and thus harder to detect. In feature
engineering we investigated some previously unexplored features such as specific
code authors or committers (including distinguishing between author and
committer), aspects of developers such as their (geographic) location, types of code
files, treating the code itself as text and also semantically categorizing the temporal
attributes (for instance placing hour of commit in buckets such as morning , evening,
late night etc.). We also analyzed many recent history based features derived from
the developer activity (commits) in time windows (days, weeks, months) before a
commit. In machine learning classification we investigated the effectiveness of

21

about a dozen different feature driven classifiers. This also included text based
classifiers for certain features that were text to begin with (the commit message for
instance) or features synthesized as text (set of tokens of folder names in the path to
a file for instance). We then evaluated ensembles of these multiple classifiers, with
exploring multiple algorithms for the ensemble assembly. Finally, we have
investigated the use of deep learning classifiers, including automated machine
learning frameworks with evaluating our fault identification task on Google Cloud
AutoML. The evaluation on a wide variety of machine learning frameworks and
with over 60 datasets allowed us to conclude that ultimately only a rather small
number of factors or features, and with discrete values, have some association with
commit fault risk. A supervised segmentation algorithm such as a Decision Tree is
this well suited for the risk classification problem. Over datasets with a very sparse
(1-3%) distribution of code faults, we have achieved a fault identification precision
improvement of about 10-fold on average and as much as 20-fold in some cases.

The conclusions from this investigation, development of the fault risk assessment
pipeline, and experimental evaluation all center on the key takeaway that a machine
learning classification based approach and system for predicting faulty commits is
effective. At a more specific level we learnt several aspects, namely:

1) From amongst a spectrum of machine learning classification approaches and
frameworks evaluated, a “simple” feature driven Decision Tree classifier had
the best performance. This is compared to other feature driven classifiers (such
as Random Forests, SVMs etc.), ensembles of such classifiers, and even deep
learning frameworks (AutoML).

2) Only a very small set of features seem influential for faulty commit prediction,
based on our feature importance analysis of a very wide spectrum of features
evaluated.

3) Factoring information of very recent development activity on the repository
(from the last few days, weeks and months) significantly improves fault
prediction capabilities. By factoring features based on recent history we were
able to achieve an average of 10-fold improvement in fault prediction (over
brute force examination), and it was as high as 20-fold for certain repositories
evaluated.

4) The approach has the potential to be effective in a real-world setting for
predicting fault in new code commits, based on the analysis of the prior
(commit) activity in that repository. Stable predictions appear to require a
training data size (of prior commits data) of about 4000 commits.

22

Overall, this effort has resulted in an approach and system that is effective in fault
risk prediction and has also provided us with a confident understanding of the limits
(prediction accuracies possible) in such a task. This forms a foundation for a tool
that we are building for software developers and software project managers that can
employ data for improving the quality of their code as well as the efficiency of the
development process.

VII. ACKNOWLEDGMENTS

We acknowledge the contributions of Matt Michelson, Neha Kansal, Khan-Luan
Phuc Nguyen, Jennilyn Dee, Maria Muslea and Arren Bustamante for their work on
the data aggregation pipeline, machine-learning pipeline, and text classification
respectively. This work was supported by SBIR contract #140D6319C0016.

REFERENCES

[1] T. Jiang, L. Tan and S. Kim, "Personalized defect prediction," 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2013, pp. 279-289, doi: 10.1109/ASE.2013.6693087.

[2] Bosu, A., Carver, J. C., Hafiz, M., Hilley, P., & Janni, D. (2014, November).
Identifying the characteristics of vulnerable code changes: An empirical study.
In Proceedings of the 22nd ACM SIGSOFT international symposium on
foundations of software engineering (pp. 257-268).

[3] Perl, Henning, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian
Yamaguchi, Konrad Rieck, Sascha Fahl, and Yasemin Acar. "Vccfinder: Finding
potential vulnerabilities in open-source projects to assist code audits."
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 426-437. 2015.

[4] Ghaffarian, S. M., & Shahriari, H. R. (2017). Software vulnerability analysis
and discovery using machine-learning and data-mining techniques: A survey. ACM
Computing Surveys (CSUR), 50(4), 1-36.

[5] Wang, S., Liu, T., & Tan, L. (2016, May). Automatically learning semantic
features for defect prediction. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE) (pp. 297-308). IEEE.

[6] Baljinder Ghotra, Shane McIntosh, and Ahmed E. Hassan. 2015. Revisiting
the impact of classification techniques on the performance of defect prediction
models. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1 (ICSE '15). IEEE Press, 789–800.

23

[7] Niedermayr, R., Röhm, T., & Wagner, S. (2019). Too trivial to test? An

inverse view on defect prediction to identify methods with low fault risk. PeerJ
Computer Science, 5, e187.

[8] Moeyersoms, J., de Fortuny, E. J., Dejaeger, K., Baesens, B., & Martens, D.
(2015). Comprehensible software fault and effort prediction: A data mining
approach. Journal of Systems and Software, 100, 80-90.

[9] Grieco, G., Grinblat, G. L., Uzal, L., Rawat, S., Feist, J., & Mounier, L.
(2016, March). Toward large-scale vulnerability discovery using machine learning.
In Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy (pp. 85-96).

[10] United States Patent 9,921,948 B2. Zieder, G., Kozorovitzky, B., Eliassaf,
O., Levi, EF., Ohad, Y. (2018) Software Commit Risk Level

[11] Barish, G., Michelson, M., & Minton, S. (2017). Mining commit log
messages to identify risky code. In Proceedings on the International Conference on
Artificial Intelligence (ICAI) (pp. 345-349). The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp).

[12] Zöller, M. A., & Huber, M. F. (2021). Benchmark and survey of automated
machine learning frameworks. Journal of artificial intelligence research, 70, 409-
472.

[13] Raschka, S., & Mirjalili, V. (2019). Python machine learning: Machine
learning and deep learning with Python, scikit-learn, and TensorFlow 2. Packt
Publishing Ltd.

[14] Kroese, D. P., Botev, Z. I., Taimre, T., & Vaisman, R. (2019). Data science
and machine learning: mathematical and statistical methods. Chapman and
Hall/CRC.

[15] Barish, G.; Ashish, N.; Minton, S. CodeFault: Identifying software risk
based on engineering behavior. 2022. InferLink Technical Report. Available at
https://www.inferlink.com/s/codefault-behavior-risk.pdf

