= S bl
» - \
. -

e

.,' “‘--

Today.....

- So far we know
« Thesimple neural network model
« Negative log likelihood (cross-entropy) loss function

« Computing gradients of the loss function with respect to the model parameters: backprop and
autodiff

- Backpropagation

- Today, is all about Gradient based Optimization

Today’s Material

e Chapter 7 on Gradient Optimization (Bishop Book) is an excellent
reference

Error Surfaces

* Minima, Maxima, Saddle point (aka Local minimum)

Complexity of this surface

* MI2M points

Optimization techniques: Local quadratic optimization

* Taylor expansion

* Hessian: matrix of second-order derivatives E(w) ~ E(W) + (w — W) b + ‘l(w ~w)"H(w — W)

2
° O(WS)
* Merit of using gradient descent : O(W?)

Gradient Descent

* Little hope of finding an analytical solution
todelta AE(w) =0

* [terative optimization for complex
continuous nonlinear functions
* Well studied

* |nitial weights: wY

w(= w(™D _ pVE(w()

* Gradients, and complexity
e Batch gradient descent

Stochastic Gradient Descent

Algorithm 7.1: Stochastic gradient descent

E(W) e Z En(W)- Input: Training set of data points indexed by n € {1,...,] N}
n=1 Error function per data point £,,(w)

Learning rate parameter 7
Initial weight vector w
Output: Final weight vector w
w =w(™) _yVE, (w(™D). sl
repeat
W W — I]VE,,(W) // update weight vecto
n+< n+1l(mod N) // iterate over data
until convergence

return w

* All data points
* An epoch

Stochastic Gradient Descent

 Mini batch

e Parameter initialization
* “He initialization” (Gaussian)

M
() _ E : (I-1)
J=1

z_,g) = R,cLU(a.,E“)

E[a{"] = 0

M ,..
val‘[z;-l) = 762)\2

Convergence: Problem with fixed step gradient

Momentum

\

Aw™ V) = _pVE (w("_l)) + pAw(™=2)

Aw = —nVE{l1+p+p*+...}

n
= - VE
1—p

Momentum

Aw = —gVE (W) + pAw™2

Aw = —pVE{14+p+p*+...}

S I
=— Y

Nesterov Momentum

Awl™™D = _pVE (w(’r—l) + [,LAW(T_Q)) + uAw™2),

Learning Rate Schedule

AdaGrad, RMSProp, Adam

B (- E(w)\”
r§)=7',(1)+(—8 (w))

8wi
() _ -1 _ 7 3E(W))
bt Wi VT +0 (Ow;

* Adam: Combine RMSProp and Momentum

10 A

—10

T
—10

Normalization

Hidden units

Mini-batch
— u
N
L
I
I
I

Mini-batch

/—/H

Hidden units

LLLTT T]s

What's so great about Adam?

- Empirically, Adam seems to work well “out of the box” for many neural networks

- It combines momentum with a cheap approximation of second order information
— actual second order methods like Newton’s method are far too expensive

- There’s also some relationship to methods which “adapt” the learning rate
separately for each parameter — AdaGrad and RMSProp

- The important takeaway: when tackling a new deep learning problem, most
people will try both stochastic gradients with momentum and Adam

- Hopefully at least one of them does well...

