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Lecture 2: Machine Learning Review - 1

COMPSCI/DATA 182: Deep Learning



From Lecture 1 
• “Is overfitting less of any issue with Deep Learning 

models ? ………..And why so ?”

• Is Deep Learning always better ?

• The “no-free-lunch” theorem 

• (in machine learning) 
D. H. Wolpert, "The Lack of A Priori Distinctions Between Learning Algorithms," in Neural
Computation, vol. 8, no. 7, pp. 1341-1390, Oct. 1996, doi: 10.1162/neco.1996.8.7.1341.



Homework Assignments

• The goals of the assignment:
• understand Neural Networks and how they are arranged in layered architectures
• understand and be able to implement (vectorized) backpropagation
• implement various update rules used to optimize Neural Networks
• implement batch normalization for training deep networks
• implement dropout to regularize networks
• effectively cross-validate and find the best hyperparameters for Neural Network 

architecture
• understand the architecture of Convolutional Neural Networks
• gain an understanding of how a modern deep learning library (PyTorch) works and 

gain practical experience using it to train models.
• You will be provided with pretty much ALL of the baseline code
• Assignment tasks will be specific code additions, validation exercises etc. 



Today….

• In this lecture and the next lecture, we will go over concepts at the core of 
machine learning as a whole

• We will focus on concepts that are the most relevant to deep learning

• Much of this will be review if you have already taken a machine learning course

• Today, we will focus on the supervised learning problem setup, go over the 
general machine learning method, and define probabilistic models, likelihood 
based loss functions, and gradient based optimization



Different classes of learning problems
(non exhaustive)

Supervised learning

Unsupervised learning

Reinforcement learning



Supervised learning ….



Supervised Learning

• In supervised learning, we are given a dataset ! = {(x1, y1), …, (xN, yN)}

• Our goal is to learn a model that predicts outputs given inputs: fϴ(x) = y

• This setup encompasses the overwhelming majority of machine learning that is 
used in industry (a multi-billion $/year industry)

• Simple basic principles



Examples of supervised learning problems
(that deep learning has done really well on !)

x y

image of object category of object

sentence in English sentence in French

audio utterance text of what was said

amino acid sequence 3D protein structure



Should the model just output ! ?
What could go wrong?

Image 0? 1? 2? 3? 4? 5? 6? 7? 8? 9?

0% 0% 0% 60% 0% 35% 0% 0% 0% 5%

0% 0% 0% 0% 50% 0% 0% 0% 0% 50%

30% 0% 70% 0% 0% 0% 0% 0% 0% 0%



Predicting probabilities

• Often, it makes more sense to have the model predict output probabilities, rather 
than the outputs themselves

• This can better capture when the model is uncertain about difficult inputs

• We’ll also see later why this makes the learning process easier

• So instead of the model output fϴ(x) being a single !, it
will instead be an entire distribution over all possible ! !

• e.g., for digit recognition, the output will be 10 numbers between 0 and 1 that sum
to 1



Howdoweoutput probabilities?

• How do we make our model output numbers between 0 and 1 that sum to 1?

• Idea: first let our model output whatever numbers it wants

• Then, make all the numbers positive and normalize (divide by the sum)

• There are many ways to make a number positive

• In this context, the most commonly used choice is !", which is bijective

• In this case, the (raw) model outputs are called logits



Aprobabilisticmodel for discrete labels

if there are K possible labels, then fϴ(x) is a vector of length K 

we represent the final probabilities using the softmax function:

= "# $ = % &)



Some examples of the softmax function

supposing K = 4, let’s work through some examples 

softmax([0, 0, 0, 0])

softmax([-100, -100, -100, -100])
softmax([0, 0, 100, 0])
softmax([-100, -100, 0, -100])
softmax([2, 1, 0, 0])



Recap

• So far, we have defined what our probabilistic model is going to look like

• In the case of discrete labels, it will output K numbers that will be 
exponentiated and normalized to form an output distribution

• What else do we need?

• How do we know whether or not the model parameters are good?

• How do we find good parameters?



The machine learning, or rather deep learning recipe 

1. Define yourmodel—which neural network, what does it output, …

2. Define your loss function—which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU



Deep learning method

1. Define yourmodel—which neural network, what does it output, …

2. Define your loss function—which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU



What loss function shouldwe use?

• In deciding on a loss function, we have a few desiderata:

• If our parameters perfectly explain the data, we should incur minimal loss

• The loss should be “easy” to optimize

• We don’t want to have to engineer new loss functions for every problem

• We will satisfy these desiderata by leveraging the most widely used tool in 
statistical inference — maximum likelihood estimation (MLE)



Maximum Likelihood

• WHAT IS: a FRUIT TYPE &  mostly ROUND & SMALL (not very though) 
& SOFT &  colored ORANGE/YELLOW/GREEN ……. ?



• Most Likely : Citrus fruits ! 
versus ….



The maximum likelihood principle & 
estimation (MLE)

given data ! = {(x1, y1), …, (xN, yN)}

assume a set (family) of distributions on (x, y)

the parameters dictate the conditional distribution of given

the objective/definition:



FromMLE to a Loss Function

we are given ! = {(x1, y1), …, (xN, yN)}
our goal is to find

working with a product of terms is tricky and messy…

idea: take the log instead! this leads to the negative log likelihood loss function:

(usually, we divide by N to work with average loss rather than summed loss)



Why are we minimizing something, versus 
just maximizing likelihood ?
• Congruence with Errors we have seen: in statistical analysis and 

traditional (feature-driven) machine learning
• Congruence with optimization processes
• Such as gradient descent etc. 



Thenegative log likelihood loss function

this loss is oftentimes called the cross-entropy loss — what is cross-entropy?

let’s plug in pdata (the true data distribution) for and some pϴ for :

maximizing log likelihood is approximately equivalent to minimizing cross-entropy!



Shouldwe use the negative log likelihood loss?
Revisiting our desiderata

• If our parameters perfectly explain the data, we should incur minimal loss

• Given sufficient data, the log likelihood is maximized by the “true” parameters, if 
our model is able to represent the underlying data distribution

• This is related to an attractive property of MLE called consistency

• The loss should be “easy” to optimize — more on this next

• We don’t want to have to engineer new loss functions for every problem

• Many commonly used loss functions, such as squared error for regression, 
can be derived/motivated from log likelihood for different modeling assumptions



Deep learning method

1. Define yourmodel—which neural network, what does it output, …

2. Define your loss function—which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU



What optimizer should we use?
• Deep learning relies on iterative optimization to find good

parameters

• Starting from an initial “guess”, continually refine
that guess until we are satisfied with our final
answer

• By far the most commonly used set of iterative optimization
techniques in deep learning is (first order) gradient based
optimization and variants thereof

• Basically, move the parameters in the direction of the
negative gradient of the average loss



Synergy between loss function and optimizer

• The gradient tells us how the loss value changes for small parameter changes

• We decrease the loss if we move (with a small enough) along the direction of 
the negative gradient (basically, go “opposite the slope” in each dimension)

• This motivates choosing the loss function and model carefully, such that the loss 
function is differentiablewith respect to the model parameters

• The negative log likelihood fulfills this for many reasonable problem setups

• What loss function would not be differentiable?

• For example, the 0-1 loss function: 0 if the model is correct, 1 otherwise



Simple example: Logistic Regression
(aka the Linear Neural Network)

• Given x e Rd, define fϴ(x) = ϴTx, where is a d × K matrix

• Then, for class c e {0,…, K – 1}, we have pϴ(y = c |x) = softmax( fϴ(x))c

• Loss function: l(ϴ; x, y) = – log pϴ(y|x)

• Optimization:



For Binary Classification

Exercise: 

Note: The recommended reading
“Binary classification and logistic
regression” (by L. Chen) discusses this
well and in detail.


