
Speaker: Eric Kim

Lecture 24: Closing Lecture (1/2)
Data C182 (Fall 2024). Week 15. Tuesday Dec 3rd, 2024

1

Announcements

• HW04 ("Visual Transformer, Masked Autoencoder") out! Due: Sun Dec 15th
11:59 PM PST

• University-wide course evaluations released! Please fill it out, we'd greatly
appreciate it!

• https://course-evaluations.berkeley.edu/Berkeley/

2

https://course-evaluations.berkeley.edu/Berkeley/

Final project is out!

• For info, see the Ed post: [link]

• Due date: Fri Dec 20th 11:59 PM PST

• Group size: 2-4 people

• You'll build an end-to-end ML pipeline

• Dataset preprocessing, Dataloader

• Modeling

• Offline evaluation pipeline

https://edstem.org/us/courses/64085/discussion/5809619

Today's lecture

• Final Project advice

• Closing thoughts

• General advice

• AMA

Final Project Advice

• This project makes heavy use of: torch, pandas, and sklearn.

• Hint: embrace usage of sklearn functions, especially for data preprocessing
and offline evaluation!

• Reading the sklearn docs + Googling will be helpful

• Start early, and carefully read the project spec, as there are many hints

• Tip: you can do this project on a CPU runtime in Colab! For reference, the staff
solution notebook takes ~15 minutes to run from start-to-finish.

• (Part 1), (Part 2), and (Part 3) are largely orthogonal to each other, so you can
split up each part to different people.

Final Project Advice

• (Part 5) Tip: important hyperparameters to tune:

• Learning rate

• Advice: first do a coarse grained sweep (eg LR=[1e-2, 1e-3, 1e-4, 1e-5]),
then once you’ve identified the “region of goodness”, do a finer-grained
search.

• Note: a “good” LR is dependent on model architecture. A good LR for
modelA may not be good for modelB!

• Model complexity (too complex of a model will lead to overfitting!)

• Consider implementing

• Early stopping (on validation set)

• Learning rate scheduler (cosine decay, `torch.optim. CosineAnnealingLR`
[link])

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html

Advice

• The following are some general advice that I wish I could tell my past self

Working on your own ML/DS projects

• (Ideally) Identify a project that you personally find interesting

• Example: if you enjoy music, work on an ML+music project!

• (Or) do whatever project your manager/advisor tells you to do

• These days, many fields are interested in applying ML/DS to their problems

• Example: medicine/health tech. According to a doctor I know: "It's easier for a
ML/DS person to learn the medicine stuff for a project, than it is for a doctor to
learn the ML/DS/tech stuff.“

• Lots of opportunities out there!

The typical ML pipeline

(Part 1) Training/eval dataset collection

• This is the most important part!

• Ideally: you can find an existing dataset online

• If not - ideally you can collect a dataset by, say, scraping some website or calling
some API

• Ex: scraping Google reviews/website-text

• Worst case: manually collect data via human annotations

• Tip: if you find an interesting dataset online, think of neat ways you can use it!

• Ex: People organize mp3s/MIDIs on websites by genre/composer/etc. Can use
this to: train a music generator / genre classifier / etc.

• Ex: 2D pixel art sprite collections (Pokemon: [link])

https://pokemondb.net/sprites/eevee

(Part 1.5) Feature engineering

• Important question: is there enough signal in the training data and input features
for the task?

• If not - you should rethink your approach to the problem.

• This is where your human intuition (and ML wisdom) plays an important role.

• Aka “look at the data!”

(Part 2) Modeling

• Formulate the task. Is this a classification task? Regression? Recommendation?

• Ideally you should be able to identify a reasonable loss function

Model architecture

• Advice: start with the simplest model (eg logistic regression for classification) to
establish a baseline.

• Using your baseline, run the entire train+eval pipeline end-to-end. Do things look
correct?

• Aka a "sanity check" for your ML pipeline

• Once you're convinced things look right, then proceed with model architecture
iteration (eg training fancier models)

Model experiment advice

• Learning how to debug ML models is a skill gained by practice and experience

• Standard software bugs are obvious (eg Exceptions/errors)

• ML bugs are typically more subtle: rather than outright errors, they instead
manifest as poor performance or unstable training

• This is an art + skill!

• Tip: when creating a new model architecture, see if you can overfit on a single
data sample. If you can't, then there's an issue with your
code/model/pipeline/data.

• Google has decent guides: "The Rules for ML" [link], "Tuning Playbook" [link]

https://developers.google.com/machine-learning/guides/rules-of-ml
https://github.com/google-research/tuning_playbook

(Part 3) Evaluation

• Formulate the evaluation pipeline. Which metrics will you (or can you) compute?

• Ex: accuracy/precision-recall-f1/MSE

• Eval metrics should be

• (1) Easy to compute

• (2) Easy to interpret

• Always prefer metrics that are “standard” for that kind of problem (eg in
academia/industry).

(Part 4) Iterate!

• Often, you’ll first iterate on modeling tweaks

• Ex: “let’s try modeling approach A, or model architecture B”

• But, you can (and should!) iterate on each part of the pipeline!

• Training data: maybe the training dataset isn’t large enough, or is too noisy?

• Feature engineering: maybe the input features just aren’t good enough?

• Evaluation: maybe our evaluation dataset isn’t reliable/clean enough?

• Success often means getting your hands dirty, and diving deep into each part of
the ML stack to identify any deficiencies

• Rarely, do you just click “Train” and pop out an amazing model on your first try

Best thing to do?

• The single best, most consistent way I’ve learned to improve your model?

• Collect more (and better!) training data!

What I’ve learned from industry

Industry: early career advice

• Always aim to learn and grow (especially in your first 5 years!)

• Many people advise job-hopping every 3-4 years to maximize compensation ($).
Instead, I have a different philosophy: maximize learning + growth.

• When you leave a company and join a new one, you have to “start all over”

• Establish connections, your internal “reputation”, etc.

• But: if you’re in a stagnant role where it’s unlikely you have the opportunity to
grow / get promoted, sometimes the best move is to switch companies.

• Tip: If you feel like you're stagnant in a role, proactively speak to your manager

• If nothing changes and/or you feel that there isn't a good road forward,
consider looking for another role (either at the same company, or at a different
company)

Industry: Communication

• Knowledge sharing. Keep an eye out for any learnings/takeaways you make on
projects, and prioritize sharing them out to the broader team

• Documentation/run-books. Diligently keep track of all commands/scripts/etc
required to reproduce your work

• Helps others (and “future you”) remember how to run things!

• Ex: write a running (or per-project) Google Doc that keeps track of your personal
notes/learnings/commands/etc

Industry: Tooling

• Learn how to effectively utilize productivity tools (Git, CLI, etc).

• Ex: learn how to use IDE’s like PyCharm/VSCode. Practically a requirement
when working on large codebases of hundreds of files and hundreds-of-
thousands of lines of code.

• Ex: “Jump to definition”, “search entire repo for symbols”, etc

• Learn how to write good Git commits

• Common pitfall (esp. interns): writing one massive Git PR that contains multiple
logically distinct changes.

• Difficult for me to review

• Better: break up large PR’s into multiple smaller, logically separate PR’s

Industry: Mentoring/upleveling

• As you grow in your career, keep an eye out for helping the rest of your team
grow + uplevel as well

• Ex: knowledge shareouts, writing + maintaining wikis/runbooks (“How to run
infra pipeline X”), building reusable tooling/systems for broader use, etc

• Mentoring is not only personally fulfilling, but the team/management will
appreciate your contributions to team growth (and, at higher levels, this becomes
more of an expectation).

• “good for you, your career, and your team!”

Industry: IC vs Manager

• Two tracks:

• IC: "Individual Contributor". Aka software devs, data scientists, etc (aka "not
manager").

• Management

• Engineering manager ("EM")

• Program/project manager ("PM, TPM")

Managers

• What does a manager do?

• One philosophy I've heard about managers is: "The manager's main job is to
keep their direct reports happy, and to get them promoted."

• Aka "People manager"

• Other job: come up with the vision + direction on what the team needs to do

• Other other job: shield their team from distractions (eg politics, etc)

• Other other other job: (lots of) planning to ensure that everyone is working on
projects that aligns with what the company needs

• (I personally don't know as much about this world, how they are evaluated, etc)

Switching tracks

• It's possible to switch from, say, an IC to a Manager (and back again!)

• Some people enjoy one or the other. Both are valid!

• Note: traditionally (eg before tech companies like Google), the wisdom was that
one needed to become a manager to "climb the ladder"

• However: in many newer tech companies, it's perfectly fine to remain an IC, as
there's "plenty of ladder" to climb as an IC.

Industry leveling

• While each company has their own leveling structure + guidelines, I've found that
the following guide on leveling/promotions helpful and fairly ubiquitous.

• The key concepts here are "impact" and "scope"

• You are primarily promoted based on your impact to the company.

• As you are promoted, your scope of impact will widen: first at the team-level,
then (eventually) to the company-level.

• Similarly the amount of people you internally work with (directly or indirectly) grows as you
are promoted

• Note: I will use Google's software engineer leveling system [link] as a reference point (many
companies, like Pinterest, base their levels off of Google's).

https://www.levels.fyi/companies/google/salaries/software-engineer?country=254

Industry: typical trajectory (L3 -> L4 expectations)

• L3: Entry level (first 1-2 years of your career)

• You'll learn how to work in that company's/team's codebase + ecosystem.

• Codebase: github, code reviews, etc.

• Ecosystem: internal tooling, processes, infrastructure (eg cloud clusters, etc)

• How will you be assessed?

• Can you effectively deliver well-organized, maintainable code?

• Aka "can you code well?"

• Can you work well with others?

Industry: L4 -> L5 expectations

• L4: Typically 2+ years of experience.

• Here, you've demonstrated that you are a competent developer.

• Next, to get to L5: you need to demonstrate "impact" to the company

• Example: "By shipping some code/model, I improved business metrics
(clickthrough rate / ad revenue / etc) by X%"

• For L4->L5, the level of impact is expected to be somewhat small in scope, eg
impact just within your team.

• Example: "By completing my project, I was able to improve engagement
metrics for a product feature my team owns by X%"

• Example: "By completing my project, I was able to reduce our team's EC2 infra
costs by X%, saving $Y per year."

Industry: L5 -> L6 expectations

• L5: typically 4-5+ years of experience. "Senior engineer".

• In some companies, this is considered a "terminal level"

• Here, you've demonstrated that you can deliver impact at the team-level.

• Next: to get to L6, you need to demonstrate impact outside of your team.

• This is trickier, as now it requires a certain amount of luck/strategic thinking

• Not all projects have "L6 scope". Thus, sometimes you (and your manager)
need to "play the game" a little to identify important projects that are "worthy" to
get you promoted to L6

• Example: "By completing my ML infra project, I enabled ML teams to train larger-
scale DNN models, which directly led to multiple engagement metrics wins."

Industry: L6 -> L7 expectations

• L6: "Staff engineer".

• Here, you've demonstrated that you can deliver impact both within and outside of
your team.

• Next, to get to L7, you need to demonstrate impact across the entire org.

• The expectation is that you will lead initiatives with substantial scope

• While this does require significant technical knowledge, you also need to be
very good with people skills

• Aka your goal is to convince other people to join your "cause"

• Requires top-notch technical leadership skills.

• ...Beyond L7 I don't have a good barometer yet...

“Tactical” industry advice

• Prioritize learning and growth, both technical and “soft” skills

• Plan out projects in a way that allows “failing fast”

• Ex: Rather than spend a year working on something that isn’t bearing fruit,
instead structure things so that, if things don’t work after 2-3 months,
communicate to your team/manager and pivot to a more promising direction.

• Work on projects that have a clear, measurable impact on important things

• Aka “Work on things that matter”. Helps with motivation/morale too!

• Ex: improving engagement metrics, infrastructure, revenue, dev quality of life,
etc

Industry vs Academia?

• When I was an undergrad (2007-2012), the two routes seemed completely
disjoint and incompatible.

• Academia: work on exciting state-of-the-art research + interesting problems.
Get to teach and mentor others.

• Industry: work on projects (that may not be exciting to me) to make
CompanyX more money.

• Aka feel like a tiny cog in a giant machine.

Industry vs Academia?

• Now (2024): I feel strongly that there is a lot of interesting, exciting work in
industry, especially in AI/ML/DS.

• Tech companies need good recommendation systems, which often boils
down to learning good representations

• Ex: Google/Meta/Pinterest/Amazon/etc

• The big tech companies often also have dedicated research labs doing state-
of-the-art research

• Google DeepMind, Facebook AI Research ("FAIR"), Open AI

• ...and more!

• And: you get paid much more in industry (ha)

Industry AND academia

• Remember: you don't have to choose one or the other. You can try out both!

• You can always apply to grad school after working for a few years!

Grad school vs undergrad?

• One characterization I’ve heard is: “In undergrad, you learn how to follow
instructions. In grad school, you learn how to think.”

• Alt: The primary value of a PhD is not the thesis itself. Instead the main value is
the ability to, when given a challenging problem with significant ambiguity, have
the drive and grit to find solutions.

• Drive: a PhD will likely be largely driven by you (with guidance from your advisor).
You’ll need to learn how to work independently on problems.

• Grit: a PhD will have ups and downs. You will likely suffer from low
morale/motivation at times, eg when you’re struggling with your research project.
A valuable life skill is to be able to get through the tough times and push on
through.

• Cautionary tale: PhD has ~50% attrition rate!

Grad school vs undergrad

• ML engineer roles frequently require at least an MS

• My take on why this is:

• ML projects contain significant ambiguity and nontrivial technical complexity.
Grad school tends to prepare you for this in a way that undergrad isn’t able to.

• ML is an advanced, challenging topic that is difficult to “master” in a few
undergrad courses.

• Like any craft, one needs to work on at least a few ML projects (ideally “from
scratch”) to truly learn the skills to become an effective ML practitioner

PhD advice: should I do a PhD?

• You should do a PhD only if you love your field, you love research, and you are
OK with working on a single project in a single field for 4-6 years.

• IF you're ok with the above, then my single biggest advice is: make sure that you
are compatible with your PhD advisor!

• Your PhD advisor will make or break your PhD experience. There are many
horror stories online of PhD student's lives made miserable by an advisor.

• Cautionary tale: the PhD attrition rate is ~50%!

• (for fun) PhD Comics is a humorous (yet often accurate!) view on the ups and
downs of grad school life. Read it to get a peek into grad world: [link]

https://phdcomics.com/

How did I get into ML? (short story)

• (Undergrad, 1st-2nd year) I didn’t know what I wanted to do, fairly unfocused

• (2.5 year) Discovered my love for CS and teaching (thanks CS 61BL!)

• (3rd/4th year) My undergrad research exposed me to computer vision and image
processing, thought it was neat!

• (5th year) I took a ML course (first offering of cs189!), thought it was neat!

• (Master’s) I went to grad school focusing in computer vision / AI / ML.

• Research thesis: face recognition. This thesis was one of the hardest things
I’ve ever done, but I learned a LOT (aka my “mini PhD”). 3 years!

• (Industry, Pinterest) Joined the Visual Search team, worked on computer vision
problems!

AMA

• Questions Ed post: [link]

https://edstem.org/us/courses/64085/discussion/5804791

• Given you have gone through graduate education, what are the greatest
differences between undergrad DS/ML education and graduate? Also, not sure if
you can speak to this, but were your essays for graduate school very technical in
detail?

• Do you recommend masters vs undergrad vs phd for ML engineering?

• Any recommendations for college students who want to become a ML engineer?

• What was your path to be a ML engineer like? What skills, do you think, will make
one a good ML engineer?

	Slide 1: Lecture 24: Closing Lecture (1/2)
	Slide 2: Announcements
	Slide 3: Final project is out!
	Slide 4: Today's lecture
	Slide 5: Final Project Advice
	Slide 6: Final Project Advice
	Slide 7: Advice
	Slide 8: Working on your own ML/DS projects
	Slide 9: The typical ML pipeline
	Slide 10: (Part 1) Training/eval dataset collection
	Slide 11: (Part 1.5) Feature engineering
	Slide 12: (Part 2) Modeling
	Slide 13: Model architecture
	Slide 14: Model experiment advice
	Slide 15: (Part 3) Evaluation
	Slide 16: (Part 4) Iterate!
	Slide 17: Best thing to do?
	Slide 18: What I’ve learned from industry
	Slide 19: Industry: early career advice
	Slide 20: Industry: Communication
	Slide 21: Industry: Tooling
	Slide 22: Industry: Mentoring/upleveling
	Slide 23: Industry: IC vs Manager
	Slide 24: Managers
	Slide 25: Switching tracks
	Slide 26: Industry leveling
	Slide 27: Industry: typical trajectory (L3 -> L4 expectations)
	Slide 28: Industry: L4 -> L5 expectations
	Slide 29: Industry: L5 -> L6 expectations
	Slide 30: Industry: L6 -> L7 expectations
	Slide 31: “Tactical” industry advice
	Slide 32: Industry vs Academia?
	Slide 33: Industry vs Academia?
	Slide 34: Industry AND academia
	Slide 35: Grad school vs undergrad?
	Slide 36: Grad school vs undergrad
	Slide 37: PhD advice: should I do a PhD?
	Slide 38: How did I get into ML? (short story)
	Slide 39: AMA
	Slide 40
	Slide 41
	Slide 42

