
11.27.24

Repository
To Environment
Presenter:
Jinjian Liu

R2E

2

Road Map
R2E

R2E Overview

Scaling

Multilingual

Pyperf

Future Directions

1.

2.

3.

4.

5.

R2E Overview

Foundation: "R2E: Turning Any GitHub Repository into a Programming Agent Environment." ICML 2024 Poster, May 2024, https://r2e.dev/.
https://sky.cs.berkeley.edu
Motivation: Build a scalable and reliable testbed for AI-assisted code generation. R2E is created as a framework to evaluate
code-generating systems and produce benchmarks.

Steps:
1. Problem curation: Based on collected qualifying repositories (40 + stars, non-fork, etc.), curate qualifying functions for standard
correctness evaluation testing (has docstring, connected with other repo components, no GPU requirements, etc.) -> 9825 problems from
429 repositories.

2. Test Harness Generation: Generate high-quality equivalence test harnesses using LLM like GPT-4 with “dependency slicing based
prompt” to ensure minimal yet sufficient context (not entire repo). Focus on equivalence tests (comparing generated outputs with reference
function outputs) instead of I/O pairs.

3. Test Harness Evaluation: Quality and Validity An example
problem and
test harness

 4. Finally: The researchers instantiate this framework to
construct R2E-Eval1, the first large-scale dataset of real-world
code generation problems with functional correctness tests.

https://r2e.dev/
https://www.youtube.com/watch?v=dQw4w9WgXcQ

R2E Scale
Motivation: We want to use LLM to not only generate code, but also to parse and understand the building environments of repositories.

Summary of what we have already:

R2E provides an initial framework supporting test harness generation. When given a random GitHub repo url, some amount of manual work needs to be done to setup
the repository, and then when the user randomly picks a function to test: 1. it will firstly figure out the dependent functions that are used in the target function, generate a
prompt for the LLM, ask it to generate the target function without seeing the ground truth. 2. It will secondly ask an LLM to write a test function to test the equivalence
of the generated function and the original function, execute both and make sure they are equivalent.

In this way, when an LLM connected to a GitHub repository, it can first setup (through docker), then try to write functions, with the test cases provided. Finally, it will
debug the code until it is correct.

Goal:
Extending from our motivation, the purpose of the R2E Scale project is to build a universal coding simulator (similar to VisualStudio Code)
that is compatible and scalable across different codebases. On the end goal, when people want to connect a codebase to an LLM through
our simulator, we want to enable software workflows like code generation, unit test generation, debugging, execution, PR raising/fixing, etc.
So that people can safely test their LLM agents in our simulator. The desired workflow is given a repo and some specifications, we ideally
can use an LLM to setup the repo (if the hardware requirements are met) and install all the dependencies, then define an interactive
execution and debug. Simply put: given a repo, we want to make the repo executable by writing modularized functions and testing
harnesses. Still very focused on building the reliable environment.

R2E Scale
Problem: Auto repository setup: A current limitation of the above approach right now is that the repository setup stage is not automated. This usually means some
amount of manual work still needs to be done when a new repository is connected.

Task: Automation

We built an installer script that will automatically carry out the installation on docker
images: Note we combined steps from cloning repo up to test generation all into this
one script. An installation oracle function was created to incorporate LLM support
into this process.

Key features:
1. Docker images provide isolation of different environments.
2. Multiprocess parallel execution to reduce overhead.
3. Agentic support for installation and debugging.
4. Repo quality control with number of tests

Other nuances:
1. Logger documentation for success, failure ratio and detailed output
2. Disk space management with periodic pruning

R2E Scale
Workflow:
1. Repository Curation: We used SEART to search for repos with qualifying attributes, and consolidated 1300 repositories for
experimentation. – we tested about 1000 repos, but not all of them are good/worth looking at

2. If error occurs during the installation, we optionally pass the error output to an LLM and run the suggested fixing command with the
contraction of an oracle. We limit the number of agentic loops to prevent stuck in a cycle. Sometimes LLMs would cascade on a small
mistake.

R2E Scale
Workflow – Continued:
3. Testing and analysis:

Example of a failed test

“Exec_stats” field is used to determine the success of a test. Key-word based scanning - “Error”, if “history” field is not empty
The overall ratio of (number of tests passed)/(number of tests total), with a cutoff of 0.95 to be considered as a successful installation.

R2E Scale
Data analysis: Top failure modes

● ModuleNotFoundError: 182 occurrences

● ImportError: 164 occurrences

● AttributeError: 70 occurrences

● NameError: 28 occurrences

● SyntaxError: 27 occurrences

● FileNotFoundError: 20 occurrences

● RuntimeError: 10 occurrences

● ValueError: 8 occurrences

● KeyError: 7 occurrences

● ZeroDivisionError: 2 occurrences

(348 total repos)

Module not found error distribution

Example of modules not found error:
airbytehq/airbyte is a repo for which even basic dependencies like requests,
yaml and pytest are not detected
There’s a syntax error in one of the files. This causes pipreqs to terminate
without installing

R2E Scale
Data analysis: Top failure modes

● ModuleNotFoundError: 182 occurrences

● ImportError: 164 occurrences

● AttributeError: 70 occurrences

● NameError: 28 occurrences

● SyntaxError: 27 occurrences

● FileNotFoundError: 20 occurrences

● RuntimeError: 10 occurrences

● ValueError: 8 occurrences

● KeyError: 7 occurrences

● ZeroDivisionError: 2 occurrences

(348 total repos)

Import Errors Breakdown:

In a separate experiment: How the statistics
change when import errors are excluded:
Success rate went from 7% to 14%

When all directories are added to sys.path,
import conflicts would be error inducing.

R2E Scale
Data analysis: Top failure modes

● ModuleNotFoundError: 182 occurrences

● ImportError: 164 occurrences

● AttributeError: 70 occurrences

● NameError: 28 occurrences

● SyntaxError: 27 occurrences

● FileNotFoundError: 20 occurrences

● RuntimeError: 10 occurrences

● ValueError: 8 occurrences

● KeyError: 7 occurrences

● ZeroDivisionError: 2 occurrences

(348 total repos)

Out of 31 successes of 490 tests in one experiment: Most successful
installations (23/31) achieved 1.0 pass rate, the distribution skews
towards 1.0

Success Ratio: 0.96, ID: ['facebookresearch']

Success Ratio: 0.98, ID: ['eric-mingjie']

Success Ratio: 0.99, ID: ['subbarayudu-j', 'maqp', 'nexb', 'uclnlp',
'opendevops-cn', 'markqvist']

Success Ratio: 1.00, ID: ['jiesutd', 'maratyszcza', 'musicmancorley',
'fabiocaccamo', 'csawtelle', 'dreamoftheredchamber', 'wuduhren',
'blockchain-etl', 'hips', 'dynobo', 'pyqt', 'moderngl', 'juanpotato',
'seikur0', 'vinta', 'chris7', 'merkremont', 'plasma-disassembler',
'gameboy12615', 'pyside', 'amimo', 'wuziheng', 'coldmanck']

As we can see successful installations show
pretty promising results

R2E Scale
Data analysis: Top failure modes

● ModuleNotFoundError: 182 occurrences

● ImportError: 164 occurrences

● AttributeError: 70 occurrences

● NameError: 28 occurrences

● SyntaxError: 27 occurrences

● FileNotFoundError: 20 occurrences

● RuntimeError: 10 occurrences

● ValueError: 8 occurrences

● KeyError: 7 occurrences

● ZeroDivisionError: 2 occurrences

(348 total repos)

Why pipreqs isn’t installing missing
dependencies:

Syntax Errors

- Syntax errors can cause pipreqs to
terminate early (see prev. slide)

Version Conflicts

- Docker containers use Python 3.11.5 for
parallel installation. Which sometimes
causes incompatibility issues.

- Example: removal of ABC classes from
collections breaks import statements like from
collections …. (should be from
collections.abc)

R2E Scale
Problem Summary:

Repo quality issues:
The most irksome property of the repos is that they are very miscellaneous with varying quality. Some examples of problematic features:
1. Blank tests/low number of original tests can produce false negatives, simply discard

2. Python 2 syntax in older repos. Also other dependency errors that are hard to debug. Discard

Challenge of Multiprocessing:
When number of workers is too big (>20) Unix HTTP Connection Pool error occurs at random. We fixed it by simply limiting the number of
workers to relatively smaller (~10).
Logging tend to be a little messy during the parallel processing of multiple repositories.

During installation, the success rate is still low, and the failure modes are heavily skewed towards missing modules, import errors, and
attribute not found errors.
Ideas on fixing:
Fork and locally enhance pipreqs to avoid early termination
Resolve import conflicts on sys.path

The terminal goal here is to yet bump up success ratio during automation.

R2E Multilingual

Motivation:
The above mentioned workflow now only implemented in with python language. The key challenge is to implemented a dependent function
tracker, basically a call graph analyzer for different languages.

Right now we are exploring in C. Still in the early phase of development.

Some starting steps:
1. Collect install commands to cover different type of build systems (CMake, build.sh, or custom build systems)

2. Analyze failure modes and experiment with reliable fixes (e.g. adding agent support Oracle as well?)

R2E Pyperf
This repository is still private, so I’ll only include text description. Might be a little dry.

Motivation:
Still based on LLM code optimization, we want to benchmark how well can LLM optimize a repository. And we are currently
developing that benchmark.

Workflow:
1. Problem curation: We generate commit history mapping of repositories, and find commit histories related to performance
enhancement.
Then we want to test how the amount of optimization achieved by the performance enhancing changes in contrast to before.
Changes that achieve good optimization (e.g. > 2 times speedup)

2. Test Harness Creation: Similar to the R2E Scale Project, we prompted LLM to create a test harness for interesting functions to
analyze performance enhancement. Dependency slicing is also employed here to reduce overhead and provide sufficient context. A
very interesting feature is called quickcheck - we run the test harness locally to troubleshoot before execution. Should any bugs
occur, an agentic loop is utilized to improve the tests. If the tests pass locally, we then move on to execution on a VM.
3. Finally the problems collected through both manual and automatic curation are used to develop a benchmark for LLM
optimization analysis.
Some improvements:
1. Prompt engineering

2. Better automation

Acknowledgement

Manish Shetty
Tianjun Zhang
Naman Jain
Vijay Kethenaboyina
Koushik Sen

