
Speaker: Eric Kim

Lecture 21: Recommendation 
systems
Data C182 (Fall 2024). Week 13. Tuesday Nov 19th, 2024
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Announcements

• HW03 ("Transformers + NLP") out! Due: Fri Nov 22nd 11:59 PM PST

• Eric’s Wed Nov 20th 3pm-4pm office hours will be held in-person at 110 Warren 
Hall! [link]

• Come say hi! :)
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https://edstem.org/us/courses/64085/discussion/5749139


Today's lecture

• (Part 1) (finish off GPU slides from Lecture 19)

• (Part 2) Recommendation systems

• ...and how do DNNs fit?



What is a recommendation system?

• Given a corpus of items (videos, websites, songs, products, etc): recommend the 
User something that they will like

• Examples:

• Google: item is website

• YouTube/TikTok: items are videos

• Amazon: items are other products (shopping)

• Pinterest: items are other Pins



High level: recommendation system

Recommendation system

https://www.pinterest.com/pin/55380270411502612/

Query Item (websites, videos, 

products, Pins, etc) Retrieved Results

User metadata (for user 

personalization)

Item embedding 

corpus (billions)

https://www.pinterest.com/pin/55380270411502612/


Task: Related Content

• Related content. Given a query item, recommend other related items

• Goal: recommend content that the User is likely to engage with

• Ex: if I’m shopping for white shoes, recommend me: other shoes from other 
brands, outfits that may go well with that shoe, etc.

• (Optional) User personalization. How to recommend content that is tailored to 
a User’s specific interest?



“Classic” recommendation system approaches

• PageRank (Google). Represent website inbound/outbound connections as a 
graph, and utilize graph theory to compute a quality score for each page.

• Very neat application of spectral graph theory. Boils down to computing the largest eigenvalue 
of the graph’s adjacency matrix (can’t escape linear algebra!)

• Text-based information retrieval techniques

• TF-IDF score, Bag-of-words models

• Collaborative filtering (aka matrix factorization)

• While older methods are still valid (and in use today at many companies), today 
we’ll focus on ML-based approaches



Scoring functions

• Assume we have a scoring function that, 
given two items, outputs a similarity score 
between [0.0, 1.0]. 0.0 means “low 
similarity”, 1.0 means “high similarity”.

• f(item_a, item_b) -> [0.0, 1.0]

• One simple recommendation system: 
given a query item, score all items, sort by 
score, and show top K=50 results to the 
User.

• Sorted([f(item_query, item_candidate) 
for item_candidate in item_corpus])

• The game is: how to design a good scoring 
function `f()`?

f(          ,          )=0.91

f(          ,           )=0.1



Deep learning: aka representation learning

• In this course (Data C182), we’ve 
learned that deep learning boils 
down to learning strong 
(semantic) representations for 
downstream tasks 
(classification, object detection, 
text generation, etc).

• Idea: let’s leverage DNNs to 
learn item embedding 
representations!

• Recall: an item embedding is a 
vector representation of some 
item, eg a Tensor with 
shape=[256]

0.1 0.3 ... -1.2

Item embedding 

(“representation”)

Item (ex: image, 

video, website, 

user, etc)

Embedding 

model (DNN)



Embedding metric spaces

• Popular approach: learn embeddings 
such that we can utilize simple 
similarity measures to easily compare 
two embeddings.

• Ex: dot product, cosine similarity, 
L2

• So, we know what `f()` is (a simple 
similarity metric like cosine-similarity).

• Big question: how to learn the item 
embeddings?

• In particular: how to learn such that 
embedding similarity metrics 
“works”? https://towardsdatascience.com/cosine-similarity-how-does-it-measure-the-

similarity-maths-behind-and-usage-in-python-50ad30aad7db

Pictured: cosine similarity between vectors A, B

https://towardsdatascience.com/cosine-similarity-how-does-it-measure-the-similarity-maths-behind-and-usage-in-python-50ad30aad7db
https://towardsdatascience.com/cosine-similarity-how-does-it-measure-the-similarity-maths-behind-and-usage-in-python-50ad30aad7db


Designing embedding models

• Popular starting point: take an 
existing DNN model trained 
for some task, and use some 
intermediate feature as the 
embedding representation

• What is an “intermediate 
feature”?

• Aka some intermediate 
activation map, say the 
output of some 
Linear/Conv2d/etc.

• Design question: which 
intermediate feature to use?

Conv 

Block1

Conv 

Block2
AvgPool Linear 0.1 0.3 ... -1.2

Logits (for 

classification)
Input image

Suppose this model was trained on 

ImageNet-1k classification

dim=1000



Designing embedding models

Conv 

Block1

Conv 

Block2
AvgPool Linear 0.1 0.3 ... -1.2

Logits (for 

classification)
Input image

(A) (B) (C) (F) (J)

Question: which 

of these choices 

might be the 

best for an 

embedding 

representation?

Answer: in my opinion G or H is best.

(A): using raw pixel values will not work well: too high-dimensional and has poor semantics

(B-D) Features are too low-level, eg edges.

(E) Better than (B-D), but likely too high-dimensional.

(F) Reasonable choice: has good semantics and has low-enough dimensionality to be useful as an 

embedding vector. But better options exist

(G,H) high semantics, and nice benefit is that it’s easy to explicitly define a target embedding size.

(J) Logits are too specialized for the classification task (eg ImageNet-1k), and likely throws away too 

much semantic “general purpose” information that would be useful for downstream tasks (like image 

similarity search).

Suppose this model was trained on 

ImageNet-1k classification

dim=1000

Conv 

Block3

Conv 

Block4

(D) (E)

Linear Linear

(G) (H)



Embedding visualization

• Heuristic: to check if your model is indeed 
learning a “healthy” embedding metric 
space, try clustering the embeddings + 
visualize them!

• How to project a high-dimensional 
embedding (eg 256-dim) to 2D? Lots of 
ways to do this

• Approach 1: PCA dimensionality 
reduction

• Approach 2: t-SNE (pictured applied to 
image embeddings) [link]

https://arxiv.org/abs/1702.04680

https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://arxiv.org/abs/1702.04680


Domain shift

• In practice, we take a pre-trained 
model (eg image classifier trained 
on ImageNet-1k), and do another 
training run (“fine-tuning”) on our 
internal dataset (eg
Pinterest/Instagram images).

• Reason: target images (eg
Pinterest/Instagram) often have 
different characteristics than what 
the pre-trained model has seen (eg
ImageNet-1k)

• Finetuned embeddings usually perform much 
better than pretrained embeddings!

• In ML jargon, called “domain shift”
https://mlatgt.blog/2019/09/10/overcoming-large-scale-annotation-

requirements-for-understanding-videos-in-the-wild/

Example: 

Source domain: ImageNet-1k

Target domain: Pinterest/Instagram images

https://mlatgt.blog/2019/09/10/overcoming-large-scale-annotation-requirements-for-understanding-videos-in-the-wild/
https://mlatgt.blog/2019/09/10/overcoming-large-scale-annotation-requirements-for-understanding-videos-in-the-wild/


Image embeddings: ViT

• Question: suppose we want 
to use a Visual Transformer 
(ViT) to compute image 
embeddings. What should 
we use as the image 
embedding?

• Answer: the encoder’s 
output embedding for the 
CLS token. Or: some 
intermediate embedding in 
“MLP Head” (if it has 
multiple Linear layers).



Pretrained models and metrics

• Funny enough: in practice, 
using image embeddings from 
pretrained image classification 
models works quite well even 
though there’s no “metric 
learning” going on

• Training loss is image 
classification, not anything 
“metric-y/distance-y”

• Idea: can we directly optimize 
for learning a good embedding 
that “behaves well” for some 
metric (eg cosine similarity)?

https://www.researchgate.net/figure/Working-mechanism-of-metric-learning-The-metric-learning-method-aims-

to-find-a_fig3_355201453

https://www.researchgate.net/figure/Working-mechanism-of-metric-learning-The-metric-learning-method-aims-to-find-a_fig3_355201453
https://www.researchgate.net/figure/Working-mechanism-of-metric-learning-The-metric-learning-method-aims-to-find-a_fig3_355201453


Metric learning

• Metric learning: a well-
studied problem in ML to 
learn a good feature 
representation where 
distance metrics “work 
well”

• “Deep” metric learning: 
train a DNN that learns a 
good embedding 
representation that works 
well with your desired 
distance metric (L2, 
cosine dist, etc)

https://www.mdpi.com/2073-8994/11/9/1066

https://www.mdpi.com/2073-8994/11/9/1066


Dataset: triplets

• Suppose we have a labeled dataset 
of (anchor, positive, negative)

• Example: user engagement logs.

• Anchor: Query image/post/video 
that a User viewed

• Positive: Next image/post/video 
the User clicked on next

• Negative: An image/post/video 
that the User didn’t click on

• Or: random negatives works well in practice 
too

Query 

image

(Anchor)

Results

User 

clicked on 

this 

(Positive)

User did 

not click 

(Negative)

Engagement logs 

(some cloud DB): User 

“EricKim” viewed 

query image “anchor”, 

and then clicked on 

this next image 

“positive”



Metric learning: triplet loss

• Idea: design a training loss that 
pulls (anchor, positive) 
embeddings close to each 
other, and (anchor, negative) 
embeddings far away

• New loss! “Triplet loss”

• Pytorch: `torch.nn. 
TripletMarginWithDistanceLoss` [link]

This equation uses the Lp norm (eg L1, L2, etc) as the distance metric, but in 

principle you can use any metric like: cosine similarity, dot product, etc

https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginWithDistanceLoss.html


Embedding retrieval at scale

• Armed with a good embedding model 
and an embedding metric, we’re nearly 
there to a retrieval system!

• Algorithm: given query item, compute 
similarity between each query and all 
items in the corpus. Sort by similarity

• Aka “nearest neighbor search”

• Problem: corpus can be very large 
(Billions!). Linear search is too slow: we 
want results in real time (eg <200ms 
latency)

• Solution: approximate distributed nearest 
neighbor!

f(          ,          )=0.91

f(          ,           )=0.1



Approximate nearest neighbor

• Idea: rather than compute “exact” nearest 
neighbor (too slow), compute approximate 
results (faster)

• Tradeoff: speed vs fidelity

• Popular algorithms:

• Locality-sensitive hashing (LSH)

• HNSW [link]

https://arxiv.org/abs/1603.09320


Candidate generation

• Jargon for: “initial lightweight retrieval”

• Goal: filter from Billions of corpus items down to hundreds.

• Popular choice: embedding model + ANN



Ranking stage

• Given hundred’s of candidates from candidate generator: rerank them via a ML 
model

• Since we have fewer candidates (hundreds, instead of billions), we can use 
heavier-duty ML models

• Optimize for business metrics (ex: user clickthrough rate, ad impressions, etc)

• Can inject User personalization here too!



Putting it all together: a recommendation system

Candidate 

generation

https://www.pinterest.com/pin/55380270411502612/

Ranking

Query Item Retrieved Results

User metadata (for user 

personalization)

Item embedding 

corpus (billions)

https://www.pinterest.com/pin/55380270411502612/


Putting it all together: a recommendation system

Compute

Embedding

Approx. 

Nearest 

Neighbor

Item embedding 

corpus (billions)

0.1 0.3 ... -1.2

Query 

embedding

...

0.85 0.84 0.81 0.04 0.02

dist(query, candidate)

Query Item Retrieved candidates 

("lightweight scoring")

Candidate Generation

Embedding-based retrieval

Note: must precompute item embeddings 

ahead of time, eg in an offline ML inference 

job, store to some fast key-value database 

(ex: rocksdb [link]).

https://rocksdb.org/


Putting it all together: a recommendation system

Ranker (ML)

(optional) 

additional 

business logic
...

Retrieved candidates

Final retrieved results 

(shown to User)

Ranking

User metadata (for user 

personalization)

To learn more about a real-world retrieval system, see: 

"Related Pins at Pinterest: The Evolution of a Real-World 

Recommender System" [link]

https://arxiv.org/abs/1702.07969
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