
Speaker: Eric Kim

Lecture 21: Recommendation
systems
Data C182 (Fall 2024). Week 13. Tuesday Nov 19th, 2024

1

Announcements

• HW03 ("Transformers + NLP") out! Due: Fri Nov 22nd 11:59 PM PST

• Eric’s Wed Nov 20th 3pm-4pm office hours will be held in-person at 110 Warren
Hall! [link]

• Come say hi! :)

2

https://edstem.org/us/courses/64085/discussion/5749139

Today's lecture

• (Part 1) (finish off GPU slides from Lecture 19)

• (Part 2) Recommendation systems

• ...and how do DNNs fit?

What is a recommendation system?

• Given a corpus of items (videos, websites, songs, products, etc): recommend the
User something that they will like

• Examples:

• Google: item is website

• YouTube/TikTok: items are videos

• Amazon: items are other products (shopping)

• Pinterest: items are other Pins

High level: recommendation system

Recommendation system

https://www.pinterest.com/pin/55380270411502612/

Query Item (websites, videos,

products, Pins, etc) Retrieved Results

User metadata (for user

personalization)

Item embedding

corpus (billions)

https://www.pinterest.com/pin/55380270411502612/

Task: Related Content

• Related content. Given a query item, recommend other related items

• Goal: recommend content that the User is likely to engage with

• Ex: if I’m shopping for white shoes, recommend me: other shoes from other
brands, outfits that may go well with that shoe, etc.

• (Optional) User personalization. How to recommend content that is tailored to
a User’s specific interest?

“Classic” recommendation system approaches

• PageRank (Google). Represent website inbound/outbound connections as a
graph, and utilize graph theory to compute a quality score for each page.

• Very neat application of spectral graph theory. Boils down to computing the largest eigenvalue
of the graph’s adjacency matrix (can’t escape linear algebra!)

• Text-based information retrieval techniques

• TF-IDF score, Bag-of-words models

• Collaborative filtering (aka matrix factorization)

• While older methods are still valid (and in use today at many companies), today
we’ll focus on ML-based approaches

Scoring functions

• Assume we have a scoring function that,
given two items, outputs a similarity score
between [0.0, 1.0]. 0.0 means “low
similarity”, 1.0 means “high similarity”.

• f(item_a, item_b) -> [0.0, 1.0]

• One simple recommendation system:
given a query item, score all items, sort by
score, and show top K=50 results to the
User.

• Sorted([f(item_query, item_candidate)
for item_candidate in item_corpus])

• The game is: how to design a good scoring
function `f()`?

f(,)=0.91

f(,)=0.1

Deep learning: aka representation learning

• In this course (Data C182), we’ve
learned that deep learning boils
down to learning strong
(semantic) representations for
downstream tasks
(classification, object detection,
text generation, etc).

• Idea: let’s leverage DNNs to
learn item embedding
representations!

• Recall: an item embedding is a
vector representation of some
item, eg a Tensor with
shape=[256]

0.1 0.3 ... -1.2

Item embedding

(“representation”)

Item (ex: image,

video, website,

user, etc)

Embedding

model (DNN)

Embedding metric spaces

• Popular approach: learn embeddings
such that we can utilize simple
similarity measures to easily compare
two embeddings.

• Ex: dot product, cosine similarity,
L2

• So, we know what `f()` is (a simple
similarity metric like cosine-similarity).

• Big question: how to learn the item
embeddings?

• In particular: how to learn such that
embedding similarity metrics
“works”? https://towardsdatascience.com/cosine-similarity-how-does-it-measure-the-

similarity-maths-behind-and-usage-in-python-50ad30aad7db

Pictured: cosine similarity between vectors A, B

https://towardsdatascience.com/cosine-similarity-how-does-it-measure-the-similarity-maths-behind-and-usage-in-python-50ad30aad7db
https://towardsdatascience.com/cosine-similarity-how-does-it-measure-the-similarity-maths-behind-and-usage-in-python-50ad30aad7db

Designing embedding models

• Popular starting point: take an
existing DNN model trained
for some task, and use some
intermediate feature as the
embedding representation

• What is an “intermediate
feature”?

• Aka some intermediate
activation map, say the
output of some
Linear/Conv2d/etc.

• Design question: which
intermediate feature to use?

Conv

Block1

Conv

Block2
AvgPool Linear 0.1 0.3 ... -1.2

Logits (for

classification)
Input image

Suppose this model was trained on

ImageNet-1k classification

dim=1000

Designing embedding models

Conv

Block1

Conv

Block2
AvgPool Linear 0.1 0.3 ... -1.2

Logits (for

classification)
Input image

(A) (B) (C) (F) (J)

Question: which

of these choices

might be the

best for an

embedding

representation?

Answer: in my opinion G or H is best.

(A): using raw pixel values will not work well: too high-dimensional and has poor semantics

(B-D) Features are too low-level, eg edges.

(E) Better than (B-D), but likely too high-dimensional.

(F) Reasonable choice: has good semantics and has low-enough dimensionality to be useful as an

embedding vector. But better options exist

(G,H) high semantics, and nice benefit is that it’s easy to explicitly define a target embedding size.

(J) Logits are too specialized for the classification task (eg ImageNet-1k), and likely throws away too

much semantic “general purpose” information that would be useful for downstream tasks (like image

similarity search).

Suppose this model was trained on

ImageNet-1k classification

dim=1000

Conv

Block3

Conv

Block4

(D) (E)

Linear Linear

(G) (H)

Embedding visualization

• Heuristic: to check if your model is indeed
learning a “healthy” embedding metric
space, try clustering the embeddings +
visualize them!

• How to project a high-dimensional
embedding (eg 256-dim) to 2D? Lots of
ways to do this

• Approach 1: PCA dimensionality
reduction

• Approach 2: t-SNE (pictured applied to
image embeddings) [link]

https://arxiv.org/abs/1702.04680

https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding
https://arxiv.org/abs/1702.04680

Domain shift

• In practice, we take a pre-trained
model (eg image classifier trained
on ImageNet-1k), and do another
training run (“fine-tuning”) on our
internal dataset (eg
Pinterest/Instagram images).

• Reason: target images (eg
Pinterest/Instagram) often have
different characteristics than what
the pre-trained model has seen (eg
ImageNet-1k)

• Finetuned embeddings usually perform much
better than pretrained embeddings!

• In ML jargon, called “domain shift”
https://mlatgt.blog/2019/09/10/overcoming-large-scale-annotation-

requirements-for-understanding-videos-in-the-wild/

Example:

Source domain: ImageNet-1k

Target domain: Pinterest/Instagram images

https://mlatgt.blog/2019/09/10/overcoming-large-scale-annotation-requirements-for-understanding-videos-in-the-wild/
https://mlatgt.blog/2019/09/10/overcoming-large-scale-annotation-requirements-for-understanding-videos-in-the-wild/

Image embeddings: ViT

• Question: suppose we want
to use a Visual Transformer
(ViT) to compute image
embeddings. What should
we use as the image
embedding?

• Answer: the encoder’s
output embedding for the
CLS token. Or: some
intermediate embedding in
“MLP Head” (if it has
multiple Linear layers).

Pretrained models and metrics

• Funny enough: in practice,
using image embeddings from
pretrained image classification
models works quite well even
though there’s no “metric
learning” going on

• Training loss is image
classification, not anything
“metric-y/distance-y”

• Idea: can we directly optimize
for learning a good embedding
that “behaves well” for some
metric (eg cosine similarity)?

https://www.researchgate.net/figure/Working-mechanism-of-metric-learning-The-metric-learning-method-aims-

to-find-a_fig3_355201453

https://www.researchgate.net/figure/Working-mechanism-of-metric-learning-The-metric-learning-method-aims-to-find-a_fig3_355201453
https://www.researchgate.net/figure/Working-mechanism-of-metric-learning-The-metric-learning-method-aims-to-find-a_fig3_355201453

Metric learning

• Metric learning: a well-
studied problem in ML to
learn a good feature
representation where
distance metrics “work
well”

• “Deep” metric learning:
train a DNN that learns a
good embedding
representation that works
well with your desired
distance metric (L2,
cosine dist, etc)

https://www.mdpi.com/2073-8994/11/9/1066

https://www.mdpi.com/2073-8994/11/9/1066

Dataset: triplets

• Suppose we have a labeled dataset
of (anchor, positive, negative)

• Example: user engagement logs.

• Anchor: Query image/post/video
that a User viewed

• Positive: Next image/post/video
the User clicked on next

• Negative: An image/post/video
that the User didn’t click on

• Or: random negatives works well in practice
too

Query

image

(Anchor)

Results

User

clicked on

this

(Positive)

User did

not click

(Negative)

Engagement logs

(some cloud DB): User

“EricKim” viewed

query image “anchor”,

and then clicked on

this next image

“positive”

Metric learning: triplet loss

• Idea: design a training loss that
pulls (anchor, positive)
embeddings close to each
other, and (anchor, negative)
embeddings far away

• New loss! “Triplet loss”

• Pytorch: `torch.nn.
TripletMarginWithDistanceLoss` [link]

This equation uses the Lp norm (eg L1, L2, etc) as the distance metric, but in

principle you can use any metric like: cosine similarity, dot product, etc

https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginWithDistanceLoss.html

Embedding retrieval at scale

• Armed with a good embedding model
and an embedding metric, we’re nearly
there to a retrieval system!

• Algorithm: given query item, compute
similarity between each query and all
items in the corpus. Sort by similarity

• Aka “nearest neighbor search”

• Problem: corpus can be very large
(Billions!). Linear search is too slow: we
want results in real time (eg <200ms
latency)

• Solution: approximate distributed nearest
neighbor!

f(,)=0.91

f(,)=0.1

Approximate nearest neighbor

• Idea: rather than compute “exact” nearest
neighbor (too slow), compute approximate
results (faster)

• Tradeoff: speed vs fidelity

• Popular algorithms:

• Locality-sensitive hashing (LSH)

• HNSW [link]

https://arxiv.org/abs/1603.09320

Candidate generation

• Jargon for: “initial lightweight retrieval”

• Goal: filter from Billions of corpus items down to hundreds.

• Popular choice: embedding model + ANN

Ranking stage

• Given hundred’s of candidates from candidate generator: rerank them via a ML
model

• Since we have fewer candidates (hundreds, instead of billions), we can use
heavier-duty ML models

• Optimize for business metrics (ex: user clickthrough rate, ad impressions, etc)

• Can inject User personalization here too!

Putting it all together: a recommendation system

Candidate

generation

https://www.pinterest.com/pin/55380270411502612/

Ranking

Query Item Retrieved Results

User metadata (for user

personalization)

Item embedding

corpus (billions)

https://www.pinterest.com/pin/55380270411502612/

Putting it all together: a recommendation system

Compute

Embedding

Approx.

Nearest

Neighbor

Item embedding

corpus (billions)

0.1 0.3 ... -1.2

Query

embedding

...

0.85 0.84 0.81 0.04 0.02

dist(query, candidate)

Query Item Retrieved candidates

("lightweight scoring")

Candidate Generation

Embedding-based retrieval

Note: must precompute item embeddings

ahead of time, eg in an offline ML inference

job, store to some fast key-value database

(ex: rocksdb [link]).

https://rocksdb.org/

Putting it all together: a recommendation system

Ranker (ML)

(optional)

additional

business logic
...

Retrieved candidates

Final retrieved results

(shown to User)

Ranking

User metadata (for user

personalization)

To learn more about a real-world retrieval system, see:

"Related Pins at Pinterest: The Evolution of a Real-World

Recommender System" [link]

https://arxiv.org/abs/1702.07969

	Slide 1: Lecture 21: Recommendation systems
	Slide 2: Announcements
	Slide 3: Today's lecture
	Slide 4: What is a recommendation system?
	Slide 5: High level: recommendation system
	Slide 6: Task: Related Content
	Slide 7: “Classic” recommendation system approaches
	Slide 8: Scoring functions
	Slide 9: Deep learning: aka representation learning
	Slide 10: Embedding metric spaces
	Slide 11: Designing embedding models
	Slide 12: Designing embedding models
	Slide 13: Embedding visualization
	Slide 14: Domain shift
	Slide 15: Image embeddings: ViT
	Slide 16: Pretrained models and metrics
	Slide 17: Metric learning
	Slide 18: Dataset: triplets
	Slide 19: Metric learning: triplet loss
	Slide 20: Embedding retrieval at scale
	Slide 21: Approximate nearest neighbor
	Slide 22: Candidate generation
	Slide 23: Ranking stage
	Slide 24: Putting it all together: a recommendation system
	Slide 25: Putting it all together: a recommendation system
	Slide 26: Putting it all together: a recommendation system

