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The Robotics Problem Statement

Given current and past sensor observations of the world, produce
and take actions to affect the world in some way. Repeat.
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Classical Robotics

* In classical robotics: Hand
design an algorithm that
models the world and picks
actions

* Typically formulated as
optimization

* Requires human ingenuity
= Quite difficult to do!




Successes of Deep Learning
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Deep learnlng extracts complex patterns from (lots of) data.

Dengetal., 2009 and Gao et al., 2020



Imitation Learning

Learn robot behaviors from demonstrations.

Formulate as supervised learning: given observation (or sequence
of observations), learn a model that maps it to robot actions.

a = mp(s); minimizey L(a,a”)



Imitation Learning
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Imitation Learning
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Train a big model to map from instructions and observations to actions on demo data
from various robot arms

Octo Model Team et al., 2024



Imitation Learning
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Train a big model to map observations to actions on data from a wide variety of robots (single
arms, double arms, wheeled robots, quadrupeds, ...)

- Get a model that can control all sorts of robots!

Doshi, Walke, et al., 2024



Using Large Pretrained Models
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Use language models to pick reasonable
subtasks

Ahnetal., 2022 and Liang et al., 2022
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block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name):

empty_bowl = bowl_name

break
objs_to_stack = [empty_bowl]|+ block_names
stack_objects(objs_to_stack)

l def is_empty(name):

def stack_objects(obj_names):
n_objs = len(obj_names) ‘
for i in range(n_objs - 1): ®
obj@ = obj_names[i + 1]
obj1 = obj_names[i]
(obj@, obj1)

Use language models to write code that a robot
can execute



Vision-Language-Action Models
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Start with a pretrained vision-language model and fine-tune it to produce robot actions in response to
an instruction and observation with imitation learning

Kim, Pertsch, Karamcheti, et al., 2024



Robot Reasoning
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Do the same thing as before, but generate reasoning before picking the robot action

Zawalski, Chen, et al., 2024



Where Do We Go From Here?

a Droneracing: human versus autonomous

Further scaling up imitation learning Reinforcement learning

Or something else?

Physicallntelligence et al., 2024 and Kaufmann et al., 2023
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