
Speaker: Eric Kim

Lecture 19: Accelerating and
scaling DNN training (GPU)
Data C182 (Fall 2024). Week 12. Tuesday Nov 12th, 2024

1

Announcements

• HW03 ("Transformers + NLP") out! Due: Fri Nov 22nd 11:59 PM PST

• Please start early!

• Midterm finalized stats (post regrade requests)

• (very little change from pre regrade requests)

2

Today's lecture

• (Part 1) Guest talk by William Chen (TA)!

• Topic: Robotics + DL

• (Part 2) GPU, multi-GPU, multi-Node training

• GPU tour: CUDA, cuDNN, NCCL (all_reduce)

What is a GPU?

• GPU: "Graphics Processing Unit"

• A separate hardware device that connects to your
computer. Aka "discrete graphics card"

• Reason to use them: if you can express your
computation in a "GPU-friendly" way, then you can
have much higher compute throughput than CPUs

• Typical applications: gaming, photo/video editing,
video streaming

• CPU benefits: flexible, low-latency, accessible
(every computer has a CPU!)

• GPU benefits: (very) high compute throughput

Pictured: my GeForce RTX 3080 Ti!

What is a GPU?

• Two classes of GPUs:

• Gaming/commodity. Aka what you buy for
your gaming PC.

• Ex: Nvidia GeForce RTX 4080: >$999

• Data center. Aka what big companies like
Google/Meta/OpenAI train/serve their
DNN models on.

• Ex: Nvidia H100 GPU: ~$25k per card.

• Most heavy-duty DNN train machines
have 8 GPUS, so ~$200K per machine.

• Aka Amazon Cloud + Nvidia is making the big bucks right now!

Pictured: Nvidia DGX-2 data center machine [link] at

Nvidia's booth for CVPR 2018 (Salt Lake City!). Has

16 Tesla V100 GPUs, likely worth several hundreds

of thousands of USD!

https://www.nvidia.com/en-au/data-center/dgx-2/

Major GPU types

• As of 2024: in this course (and ~99% of ML/AI):
we use Nvidia GPUs (CUDA, cuDNN).

• DNN frameworks like pytorch have excellent
support for Nvidia GPUs (CUDA)

• TPU ("Tensor Processing Unit"): A special type of
"AI accelerator" hardware built by Google [link]

• Ex: Tensorflow, Google papers often use TPUs
instead of Nvidia GPUs

• In Colab, you can choose either Nvidia GPU
(eg T4) or a TPU.

• AMD is trying to enter the AI/ML market too
(IMO, difficult to break in at the moment) Colab: T4 is Nvidia GPU, "TPU" is Google TPU

https://cloud.google.com/tpu?hl=en

Original GPU motivation

• Original intent: accelerate graphics
processing, eg for computer graphics (CGI,
Pixar) and video games (real-time graphics)

• Interested? Take CS 184! [link] Computer graphics and computer vision
have a healthy relationship, lots of interesting overlap

• Motivation: graphics ultimately boils down to
matrices and vectors. Need to accelerate
matrix/vector computation, as the CPU wasn't
enough back then (and still isn't now)

• Ex: a 3D point is represented as a 3D*
vector, rotations/translations/scales are
represented as 3x3 matrices.

https://leeyngdo.github.io/blog/computer-graphics/2024-02-29-graphics-pipeline/

https://vitaminac.github.io/Matrices-in-Computer-Graphics/

https://sciencebehindpixar.org/pipeline/rendering

* actually, we represent 3D points as a 4D vector [x, y, z, 1]

("homogenous" coordinates), and transformation matrices as 4x4

matrices, for good reasons (projective geometry).

https://cs184.eecs.berkeley.edu/sp24
https://vitaminac.github.io/Matrices-in-Computer-Graphics/
https://vitaminac.github.io/Matrices-in-Computer-Graphics/
https://sciencebehindpixar.org/pipeline/rendering

What do GPUs excel at?

• GPUs can do a LOT of parallel computation, much more so than CPUs!

• CPU: Typically has 4-16 cores (up to 8-32 active threads with hyperthreading)

• GPU: A Tesla P100 GPU has 56 "Streaming Multiprocesesors", each with 2048
active threads (up to 114688 active threads!)

• If your computation can be easily parallelized, then GPUs are very good

• Fortunately, nearly all DNN code falls under this category!

• Matrix/vector calculations (Linear, Conv2d, Relu, Softmax, etc.)

• (2017) "Tensor Cores" [link] are an Nvidia hardware feature that further
accelerates certain DNN operations, particularly for lower-precision datatypes
like float16 ("mixed precision training")

https://en.wikipedia.org/wiki/Volta_(microarchitecture)

GPUs for ML

• AlexNet (2012) was an early (successful!)
example of training a ConvNet on GPU hardware

• GPU acceleration caught on: DNN libraries began
offering "first class" GPU support

• Caffe (2014): Developed at UC Berkeley. [link]

• Caffe2 (2017): Developed at Facebook. [link]

• Note: basically deprecated in favor of pytorch

• Tensorflow (2015): Developed at Google [link]

• Pytorch (2016+): Developed at Facebook [link]

As of 2024, Pytorch and Tensorflow are the top DNN frameworks in use at both industry

and academia. Personally: I prefer pytorch, but each has their strengths and weaknesses.

https://caffe.berkeleyvision.org/
https://caffe2.ai/
https://www.tensorflow.org/
https://pytorch.org/tutorials/beginner/saving_loading_models.html

Nvidia: CUDA

• CUDA: Compute Unified Device
Architecture

• Low-level library that tells the GPU how
to compute your desired code.

• CUDA code is basically C code

• Main idea: you write CUDA code that
expresses your computation in a
"parallelizable" way, to effectively utilize
the GPU's many execution threads

• Writing performant parallel code is an
art! 99% of the time ML devs don't
have to worry about this

__global__
void add(int n, float * x, float * y) {

int index = threadIdx.x;
int stride = blockDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}

Pictured: element-wise vector addition

CUDA code. Vector-addition is easily

parallelizable, so we can chunk up the input

arrays ("blocks") and dispatch each block to

different GPU execution threads to process

in parallel!

Nvidia cuDNN

• cuDNN: an Nvidia library built on top of
CUDA to provide high-performance DNN
kernels (like optimized linear
forward/backward, conv2d fwd/bkwd, etc)

• DNN frameworks like pytorch, tensorflow
ultimately compile down to CUDA code
(often via cuDNN calls) which is what
actually runs on your GPU!

Pytorch + GPUs

• Pytorch makes it easy to use GPUs in your pytorch code!

• Terminology: all Tensors live on a `torch.device` [link]

• By default: CPU device: `torch.device("cpu")`

• GPU (cuda): torch.device("cuda")

• (If your machine has multiple GPUs) torch.device("cuda:0"), torch.device("cuda:1"), ...

• Main principle: when doing an operation involving two tensors, both tensors must
be on the same device!

Tensor(CPU) + Tensor(CPU): OK!

Tensor(GPU) + Tensor(GPU): OK!
Tensor(CPU) + Tensor(GPU): ERROR!

https://pytorch.org/docs/stable/tensor_attributes.html#torch.device

Pytorch example code: Tensor devices

create tensor directly on cuda device
my_zeros_cuda = torch.zeros(size=[2, 3], device=torch.device("cuda:0"))
create tensor on CPU, but move it to GPU (CPU -> GPU copy)
my_ones_cpu = torch.ones(size=[2, 4])
my_ones_cuda = my_ones_cpu.to(device=torch.device("cuda:0"))

if you have multiple gpus, can send a tensor to a specific one
my_ones_cuda_device0 = my_ones_cpu.to(device=torch.device("cuda:0"))
my_ones_cuda_device1 = my_ones_cpu.to(device=torch.device("cuda:1"))

finally, can send a tensor from GPU back to CPU
my_ones_cuda_to_cpu = my_ones_cuda.to(device=torch.device("cpu"))

Beware: when doing ops between two tensors, they both most be on the
same device!
RuntimeError: Expected all tensors to be on the same device, but found
at least two devices, cuda:0 and cpu!
my_ones_cpu + my_ones_cuda # ERROR

CPU

Memory

my_ones_cpu

GPU:0

Memory

my_ones_gpu

CPU -> GPU

device copy

Pytorch example code: module.to(device)
import torch, torch.nn as nn
class Autoencoder(nn.Module):

def __init__(self, out_channels_first: int = 16):
super().__init__()
self.encoder = nn.Sequential(# like the Composition layer you built

nn.Conv2d(1, out_channels_first, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(out_channels_first, 32, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 7)

)
self.decoder = nn.Sequential(

nn.ConvTranspose2d(64, 32, 7),
nn.ReLU(),
nn.ConvTranspose2d(32, out_channels_first, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(out_channels_first, 1, 3, stride=2, padding=1, output_padding=1),
nn.Sigmoid()

)
def forward(self, x):

x = self.encoder(x)
x = self.decoder(x)
return x

def print_statedict_info(module: torch.nn.Module):
for param_key, param_val in module.state_dict().items():

print(f"param_key={param_key}: {param_val.shape}, device={param_val.device}")

model_a = Autoencoder()
print("CPU module")
print_statedict_info(model_a)
model_a_gpu = model_a.to(device=torch.device("cuda:0"))
print("GPU module")
print_statedict_info(model_a_gpu)

(venv) PS

C:\Users\Eric\teaching\data_c182_fall2024\src\lectures\lecture19> python

.\module_gpu_demo.py

CPU module

param_key=encoder.0.weight: torch.Size([16, 1, 3, 3]), device=cpu

param_key=encoder.0.bias: torch.Size([16]), device=cpu

param_key=encoder.2.weight: torch.Size([32, 16, 3, 3]), device=cpu

param_key=encoder.2.bias: torch.Size([32]), device=cpu

param_key=encoder.4.weight: torch.Size([64, 32, 7, 7]), device=cpu

param_key=encoder.4.bias: torch.Size([64]), device=cpu

param_key=decoder.0.weight: torch.Size([64, 32, 7, 7]), device=cpu

param_key=decoder.0.bias: torch.Size([32]), device=cpu

param_key=decoder.2.weight: torch.Size([32, 16, 3, 3]), device=cpu

param_key=decoder.2.bias: torch.Size([16]), device=cpu

param_key=decoder.4.weight: torch.Size([16, 1, 3, 3]), device=cpu

param_key=decoder.4.bias: torch.Size([1]), device=cpu

GPU module

param_key=encoder.0.weight: torch.Size([16, 1, 3, 3]), device=cuda:0

param_key=encoder.0.bias: torch.Size([16]), device=cuda:0

param_key=encoder.2.weight: torch.Size([32, 16, 3, 3]), device=cuda:0

param_key=encoder.2.bias: torch.Size([32]), device=cuda:0

param_key=encoder.4.weight: torch.Size([64, 32, 7, 7]), device=cuda:0

param_key=encoder.4.bias: torch.Size([64]), device=cuda:0

param_key=decoder.0.weight: torch.Size([64, 32, 7, 7]), device=cuda:0

param_key=decoder.0.bias: torch.Size([32]), device=cuda:0

param_key=decoder.2.weight: torch.Size([32, 16, 3, 3]), device=cuda:0

param_key=decoder.2.bias: torch.Size([16]), device=cuda:0

param_key=decoder.4.weight: torch.Size([16, 1, 3, 3]), device=cuda:0

param_key=decoder.4.bias: torch.Size([1]), device=cuda:0
Takeaway: model.to(device=device) copies all of the model

parameters to the target device (eg all weight/bias params)

GPU memory: limited resource

• Beware: GPUs have a limited amount of memory. Exceeding GPU memory will
lead to your train run being killed with a "GPU out of memory" error!

• Question: when training a DNN model, what are the main uses of GPU memory?

• Model weights. Ex: Linear's weight/bias parameters.

• Intermediate activations. If your model has N Conv2d's, then there will be N
activation feature maps that pytorch has to keep track of that uses up GPU
memory!

• Scales linearly with your batch_size!

• Gradients. Calculated during backwards()

• Additional optimizer state. Ex: Adam requires `2*num_model_params`
additional values (gradient moving avg, squared gradient moving avg)

Training model on GPU: Change 1/2

• Taking a CPU pytorch training code and migrating it to the GPU is (often)
very easy, a one-line(s) change!

• Change 1: Move model (eg its model parameters) to the GPU device

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#train-the-network

Create model (on CPU first, by default)
net = Net(hidden_num_chans=model_hidden_num_chans)

Move model to GPU (if available to pytorch)
device_gpu_maybe = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")

print(f"(pre net.to) GPU max_memory_allocated: {torch.cuda.max_memory_allocated() / 1e6} MB")
net_gpu_maybe = net.to(device=device_gpu_maybe)
print(f"(post net.to) GPU max_memory_allocated: {torch.cuda.max_memory_allocated() / 1e6} MB")

(pre net.to) conv1.weight.device: cpu
(pre net.to) GPU max_memory_allocated: 0.0 MB
(post net.to) GPU max_memory_allocated: 0.481792 MB
(post net.to) conv1.weight.device: cuda:0

Note:

`torch.cuda.max_memory_allocated()`

tells us how much GPU memory

we've used. This tells us that our

model parameters takes up 0.48 MB

of GPU memory. Neat!
Huzzah, our layers

are on the GPU!

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#train-the-network

Training model on GPU: Change 2/2

• Change 2: move all model inputs (including targets/labels!) to the GPU before
calling forward

def train_model(model: torch.nn.Module, optimizer, criterion, trainloader, num_epochs: int, device:
torch.device) -> torch.Tensor:

for epoch in range(num_epochs): # loop over the dataset multiple times
running_loss = 0.0
for ind_batch, data in enumerate(trainloader, 0):

get the inputs; data is a list of [inputs, labels]
Note: dataloader outputs inputs, labels as CPU tensors
inputs, labels = data
inputs = inputs.to(device=device)
labels = labels.to(device=device)

zero the parameter gradients
optimizer.zero_grad()

forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels)

`device` is our GPU device (or CPU

device if we don't have a GPU!)

Implementation tip: this code is

"device agnostic", in that it works for

both CPU and GPU contexts (just

pass in device=torch.device("cpu")

or device=torch.device("cuda:0")).

This is the way!

Since `model` is on GPU, and

`inputs, labels` are on GPU, we

won't have errors like "mismatch

device"

Demo: pytorch CPU vs GPU (single GPU)

• Demo: gpu_train_example.py

(venv) PS
C:\Users\Eric\teaching\data_c182_fall2024\src\lectures\lec
ture19> python .\gpu_train_example.py
Files already downloaded and verified
Files already downloaded and verified
batchsize=64, model_hidden_num_chans=128,
num_dataloader_workers=2
(CPU) Begin training (120078 model params)
(CPU) Finished Training (33.91305661201477 secs,
1474.3584033733462 imgs/sec)
(pre net.to) GPU max_memory_allocated: 0.0 MB
(post net.to) GPU max_memory_allocated: 0.481792 MB
(GPU) Begin training (120078 model params)
(post train_model) GPU max_memory_allocated: 96.306688 MB
(GPU) Finished Training (9.31104588508606 secs,
5369.966018542273 imgs/sec)

Device Batchsize Train

throughput

CPU 64 1474 imgs/sec

GPU 64 5369 imgs/sec

Demo: pytorch CPU vs GPU (single GPU)

• Interestingly: the CPU doesn't always
outperform the GPU! (here it does, but there are settings where it doesn't)

• A few rules of thumb:

• Model should be big enough

• Batchsize needs to be big enough too!

• Reason: too small model/batchsize means
you spend most of your time doing CPU<-
>GPU communication, leading to poor GPU
utilization

• GPU's ideal computing mode: operate on
large data "all at once" (aka large batches),
rather than small data one-at-a-time.

Device Batchsize Train

throughput

CPU 64 1474 imgs/sec

GPU 64 5369 imgs/sec

CPU 4 1350 imgs/sec

GPU 4 1633 imgs/sec

CPU 2 860 imgs/sec

GPU 2 937 imgs/sec

Multi-GPU

• When working with large models + large datasets, we want to keep scaling up,
ideally by throwing more compute (aka hardware, aka $) at the problem

• Horizontal scaling: add more compute (machines, GPUs)

• Vertical scaling: make each individual GPU faster

• Both are important! But at a given time, horizontal scaling is quicker+easier to do

Multi-GPU

• Fortunately, we can easily* attach multiple GPUs to a single machine at a time

• Example: AWS EC2 p4d.24xlarge cloud instance type has 8 NVIDIA A100 Tensor
Core GPUs, each with 40 GB GPU memory (quite large as of 2024!)

• This is what many people in industry use to train large models (including my team). As of 2024-11, costs ~$290k per year to rent one!

• Engineering Question: how to effectively utilize multiple GPUs on a single
machine for training DNN models?

• For simplicity: assume that all GPUs on a single machine are all the same type,
eg same exact model (in practice this is true 99% of the time)

* Turns out that it's non-trivial to efficiently attach multiple GPUs on a

single machine. See: Nvidia NVLink [link]

https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/

Multi-GPU: Scenario 1

• Suppose our machine has 8 GPUs,
and our DNN model (and
activations) can fit on a single GPU.

• Question: if we wanted to maximize
training throughput, what's one way
we can utilize the 8 GPUs?

• Answer: load the model onto all 8
GPUs separately, and have each
GPU do their own forward/backward
passes in parallel!

GPU:0

Memory

model_weights

GPU:1

Memory

model_weights

GPU:2

Memory

model_weights

GPU:3

Memory

model_weights

...

Train loop

(forward,

backward)

Train loop

(forward,

backward)

Train loop

(forward,

backward)

Implementation Note: each GPU trainer gets its own training Dataloader. Take

care to ensure that each Dataloader splits up the training dataset appropriately

(ex: don't want all N GPU workers to train on the same batches!)

Multi-GPU: Scenario 1
GPU:0

Memory

model_weights

GPU:1

Memory

model_weights

GPU:2

Memory

model_weights

...

Train loop

(forward,

backward)

Train loop

(forward,

backward)

Train loop

(forward,

backward)

Question: suppose each GPU worker has different training dataset splits

(aka each GPU worker operates on different train batches).

After N training batches, will the model parameters be the same across all

GPU workers?

Answer: Nope! Each GPU worker's train loop will process different batches,

thus the gradients for GPU:0 will be different than GPU:1, resulting in different

model weights for each worker. This complicates things!

Question: how can we ensure that, after each training batch (for all N GPUs),

the model_weights are the same ("in sync") for all N GPUs?

Answer: one popular way is to aggregate all of the GPU

worker's gradients (average), then have each GPU worker

apply the same aggregated ("global average") gradient.

Ensures that model_weights is the same on all GPU workers!

Multi-GPU: Aggregate gradients
GPU:0

Memory

model_weights

GPU:1

Memory

model_weights

GPU:2

Memory

model_weights

...

Train loop

(forward,

backward)

Train loop

(forward,

backward)

Train loop

(forward,

backward)

Aggregate

gradients

(Average)

Gradient for

GPU:0

Gradient for

GPU:1

Gradient for

GPU:2

GPU:0

Memory

model_weights

GPU:1

Memory

model_weights

GPU:2

Memory

model_weights

...

Apply

gradient

Train loop

(forward,

backward)

Train loop

(forward,

backward)

Aggregate

gradients

(Average)

Global

averaged

gradient

Global

averaged

gradient

Global

averaged

gradient

Step 1: Aggregate incoming gradients Step 2: Apply global averaged gradient

Note: there exist other more efficient,

cleverer ways of optimizing this. Ex: NCCL's

ring, tree algorithms: [link]

https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/#ref1

Pytorch: DistributedDataParallel (DDP)

• Enter: torch.nn.parallel.DistributedDataParallel (or DDP) [link]

• DDP does exactly what we proposed! Consists of two parts:

• Model copy. copy the initial model weights to each GPU, via `.to(device)`

• Gradient synchronization. adds a "hook" to the backwards() pass to calculate
the aggregated gradients across all GPUs (via averaging)

• This ensures that all GPUs use the same gradients for each step, which
ensures that each GPU always has the same model weights

• Each GPU processes their own batches independently

• For 8 GPUs, you've effectively increased your batchsize by 8x!

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Terminology: world_size, rank

• world_size: the total number of workers. Ex: total number of GPUs

• rank: an integer between [0, world_size-1] (inclusive).

• Setup: each GPU will be assigned a "rank" and the "world_size", and will use this
metadata to perform its job

• Ex: Suppose world_size is 8.

• A GPU worker assigned rank=0 will use GPU0: `torch.device("cuda:0")`

• Rank=1 will use GPU1: `torch.device("cuda:1")`

• ...

• Rank=7 will use GPU7: `torch.device("cuda:7")`

DDP in pytorch
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP

class ToyModel(nn.Module):
def __init__(self):

super(ToyModel, self).__init__()
self.net1 = nn.Linear(10, 10)
self.relu = nn.ReLU()
self.net2 = nn.Linear(10, 5)

def forward(self, x):
return self.net2(self.relu(self.net1(x)))

def demo_basic():
dist.init_process_group("nccl")
rank = dist.get_rank()
print(f"Start running basic DDP example on rank {rank}.")
create model and move it to GPU with id rank
device_id = rank % torch.cuda.device_count()
model = ToyModel().to(device_id)
ddp_model = DDP(model, device_ids=[device_id])
loss_fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

optimizer.zero_grad()
outputs = ddp_model(torch.randn(20, 10))
labels = torch.randn(20, 5).to(device_id)
loss_fn(outputs, labels).backward()
optimizer.step()
dist.destroy_process_group()
print(f"Finished running basic DDP example on rank {rank}.")

if __name__ == "__main__":
demo_basic()

use torch_elastic to launch script N times, one
for each GPU worker
--nnodes: number of nodes. For us, 1 machine
--nproc_per_node: number of GPUs. For us: 8
torchrun --nnodes=1 --nproc_per_node=8 --rdzv_id=100 --
rdzv_backend=c10d --rdzv_endpoint=$MASTER_ADDR:29400
elastic_ddp.py

For more info, see: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

`device_id` is the assigned GPU

device to use: f"cuda:{device_id}"

Wrap model on DDP()

Can use `ddp_model` just like

regular `model`! Very convenient.

Boilerplate code to initialize

distributed backend (NCCL)

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

DDP: sync and all_reduce (NCCL)

• An important part of DDP is the gradient synchronization

• For N GPUs, each GPU will independently perform their own "local"
forward/backwards pass to calculate N different gradient updates

• DDP's job is to take all N gradient updates, average them, then transmit this
aggregated gradient to all N GPUs so that each GPU can perform their weight
updates.

• Common name for this operation: "all_reduce"

• Pytorch supports dispatching the all_reduce call to a variety of libraries [link]

• For Nvidia GPUs: use NCCL [link]

https://pytorch.org/docs/stable/distributed.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/operations.html

Multi-GPU: Scenario 2

• Suppose our machine has 8 GPUs, and
our DNN model (and activations) can't
fit on a single GPU.

• Question: how can we utilize the 8
GPUs to train our DNN model?

• Answer: split the model up across
multiple GPUs!

• Question: what downsides can you
think of?

• Answer: slower training, due to
additional cross-GPU communication

GPU:0

Memory

weights_part_a

MyDNNModel

weights_part_a

weights_part_b

weights_part_c

GPU:1

Memory

weights_part_b

GPU:2

Memory

weights_part_c

Pytorch: FullyShardedDataParallelism (FSDP)

• Pytorch's FSDP implements this "model sharding" idea [link]

• Implementation challenge: how to distribute model parameters (eg layers) in a
way that minimizes cross-gpu device copies?

• Heuristic: FSDP works well for very large models, eg when model weights are a
substantial fraction of available GPU memory

• FSDP is also handy to increase total batchsize at the expense of some efficiency

https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html

DDP vs FSDP

Name Impact on: GPU memory Impact on: Train

throughput

When to use?

DistributedDataParallel

(DDP)

For N GPUs, model

weights are duplicated N

times (waste). Con!

Each GPU does

forward/backward

independently: no cross-

GPU communication

required (except for

all_reduce). Pro!

If your model+activations

comfortably fits in GPU

memory AND you are

happy with your current

batch_size

FullyShardedDataParallel

(FSDP)

Model weights are

instantiated only once

(split across N GPUs).

Pro!

Training throughput is

worse due to cross-GPU

communication. Con!

If your model can't fit on a

single GPU: MUST use

FSDP.

Or: if you need a higher

batchsize but it won't fit

with DDP: try FSDP!

Multi-Node, Multi-GPU: DDP

• Suppose we have M machines, each with N GPUs. How to effectively utilize this for
training DNN models?

• Fortunately, the earlier principles generalize quite nicely!

• DDP:

• M=1 machine, N GPUs: all_reduce across GPUs (within a single machine)

• M>1 machines, N GPUs each: all_reduce across ALL GPUs

• Involves cross-machine communication during gradient sync!

• FSDP

• M=1 machine, N GPUs: split model parameters across N GPUs

• M>1 machines, N GPUs each: split model parameters across M*N GPUs

• Involves cross-machine comm during forward/backward

DDP in pytorch (multi-node)
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP

class ToyModel(nn.Module):
def __init__(self):

super(ToyModel, self).__init__()
self.net1 = nn.Linear(10, 10)
self.relu = nn.ReLU()
self.net2 = nn.Linear(10, 5)

def forward(self, x):
return self.net2(self.relu(self.net1(x)))

def demo_basic():
dist.init_process_group("nccl")
rank = dist.get_rank()
print(f"Start running basic DDP example on rank {rank}.")
create model and move it to GPU with id rank
device_id = rank % torch.cuda.device_count()
model = ToyModel().to(device_id)
ddp_model = DDP(model, device_ids=[device_id])
loss_fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

optimizer.zero_grad()
outputs = ddp_model(torch.randn(20, 10))
labels = torch.randn(20, 5).to(device_id)
loss_fn(outputs, labels).backward()
optimizer.step()
dist.destroy_process_group()
print(f"Finished running basic DDP example on rank {rank}.")

if __name__ == "__main__":
demo_basic()

use torch_elastic to launch script N times, one
for each GPU worker
--nnodes: number of nodes. For us, 4 machines
--nproc_per_node: number of GPUs. For us: 8
torchrun --nnodes=4 --nproc_per_node=8 --rdzv_id=100 --
rdzv_backend=c10d --rdzv_endpoint=$MASTER_ADDR:29400
elastic_ddp.py

For more info, see: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Other than that, everything is nearly the same! Pytorch

set things up nicely so that very little has to change

when scaling from M=1 machines to M=4 machines.

The world_size/rank abstraction makes things very

convenient :)

Now, `rank` spans multiple machines.

Ex: if each machine has 8 GPUs, then:

Rank=[0, 1, ..., 7]: Machine 0

Rank=[8, 9, ..., 15]: Machine 1

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Example: "Train ImageNet in 1 hour"

• In "Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour" (2018) [link] the authors,
using a large distributed GPU cluster, trained a
ResNet-50 model on ImageNet-1k "from
scratch" in one hour. A neat accomplishment for
that time!

• Hardware: 256 GPUs ("Big Basin" [link] GPU cluster internal to

Facebook, 16GB GPU mem per card. Nvidia Tesla P100).

• Distributed training setup: basically DDP (they
used Caffe2, not pytorch, but same idea)

https://arxiv.org/abs/1706.02677
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/

Learning rate: Linear scaling rule

• Learning: when scaling up the
number of GPUs (aka increasing
the effective batchsize), one must
adjust the learning rate accordingly
("linear scaling rule").

• Rule: double the batchsize ->
double the learning rate.

Gradient quality vs num steps?

• Observation: if you keep the number training
epochs fixed, then increasing the batchsize
leads to fewer model updates.

• Higher batchsize -> higher quality gradient
updates, but fewer parameter updates

• Lower batchsize -> noisier gradient
updates, but more parameter updates.

• What is best? Paper's answer: higher
batchsize AND higher learning rate.

• ...to a point. Beyond batchsize=8k,
classification error starts increasing.

"Train ImageNet in 1 hour": Hardware advances

• A sign that GPU hardware (and DNN libraries + distributed training frameworks)
is advancing quickly

• ...And, a hint that ImageNet-1k is starting to feel small!

• (later in Aug 2018, someone showed we can train ImageNet in 18 mins for $40
using AWS cloud! [link])

• In 2024, I bet things are even faster + cheaper! Technology marches on...

https://www.fast.ai/posts/2018-08-10-fastai-diu-imagenet.html

Tangent: Learning rate schedules

• So far in this class, we've used a single learning rate.
In practice, it's better to use learning rate schedules

• Start learning rate small, then gradually ramp it up to
a larger value (eg the first ~100 iterations)

• Intuition: starting learning rate too high often leads
to training divergence (eg NaN losses). Thus, we
start it low to get the model weights in a "healthy"
region, then slowly increase the learning rate

• Over the course of training, decay the learning rate

• Intuition: during early parts of training, model
needs to make big steps (high LR). But, near the
end of training, model is focusing on finer-grained
details (small LR).

https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-

classification-networks-d5f0bffb242d

https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-classification-networks-d5f0bffb242d
https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-classification-networks-d5f0bffb242d

(unused) CUDA example: element-wise vector
addition

__global__
void add(int n, float * x, float * y) {

int index = threadIdx.x;
int stride = blockDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}

Consider: elementwise-vector addition. Given two

vectors x, y (with shape=[N]), output (x+y).

This is an "embarrassingly parallel" problem: chunk up

the input vectors into K chunks, and process each

chunk independently in parallel!

To learn more, see: https://developer.nvidia.com/blog/even-easier-introduction-

cuda/

Ex: for vector element-wise addition, one way to

do it ("embarassingly parallel"):

- Break the input vector into numBlocks chunks

- within each block, have a separate thread

perform a single `y[i] = a[i] + b[i]`

Here, we divide the input array into blocks.

Within each block, we assign threads to each

block element.

https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/

	Slide 1: Lecture 19: Accelerating and scaling DNN training (GPU)
	Slide 2: Announcements
	Slide 3: Today's lecture
	Slide 4: What is a GPU?
	Slide 5: What is a GPU?
	Slide 6: Major GPU types
	Slide 7: Original GPU motivation
	Slide 8: What do GPUs excel at?
	Slide 9: GPUs for ML
	Slide 10: Nvidia: CUDA
	Slide 11: Nvidia cuDNN
	Slide 12: Pytorch + GPUs
	Slide 13: Pytorch example code: Tensor devices
	Slide 14: Pytorch example code: module.to(device)
	Slide 15: GPU memory: limited resource
	Slide 16: Training model on GPU: Change 1/2
	Slide 17: Training model on GPU: Change 2/2
	Slide 18: Demo: pytorch CPU vs GPU (single GPU)
	Slide 19: Demo: pytorch CPU vs GPU (single GPU)
	Slide 20: Multi-GPU
	Slide 21: Multi-GPU
	Slide 22: Multi-GPU: Scenario 1
	Slide 23: Multi-GPU: Scenario 1
	Slide 24: Multi-GPU: Aggregate gradients
	Slide 25: Pytorch: DistributedDataParallel (DDP)
	Slide 26: Terminology: world_size, rank
	Slide 27: DDP in pytorch
	Slide 28: DDP: sync and all_reduce (NCCL)
	Slide 29: Multi-GPU: Scenario 2
	Slide 30: Pytorch: FullyShardedDataParallelism (FSDP)
	Slide 31: DDP vs FSDP
	Slide 32: Multi-Node, Multi-GPU: DDP
	Slide 33: DDP in pytorch (multi-node)
	Slide 34: Example: "Train ImageNet in 1 hour"
	Slide 35: Learning rate: Linear scaling rule
	Slide 36: Gradient quality vs num steps?
	Slide 37: "Train ImageNet in 1 hour": Hardware advances
	Slide 38: Tangent: Learning rate schedules
	Slide 39: (unused) CUDA example: element-wise vector addition

