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Announcements

• HW03 ("Transformers + NLP") out! Due: Fri Nov 22nd 11:59 PM PST

• Please start early!

• Midterm finalized stats (post regrade requests)

• (very little change from pre regrade requests)
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Today's lecture

• (Part 1) Guest talk by William Chen (TA)!

• Topic: Robotics + DL

• (Part 2) GPU, multi-GPU, multi-Node training

• GPU tour: CUDA, cuDNN, NCCL (all_reduce)



What is a GPU?

• GPU: "Graphics Processing Unit"

• A separate hardware device that connects to your 
computer. Aka "discrete graphics card"

• Reason to use them: if you can express your 
computation in a "GPU-friendly" way, then you can 
have much higher compute throughput than CPUs

• Typical applications: gaming, photo/video editing, 
video streaming

• CPU benefits: flexible, low-latency, accessible 
(every computer has a CPU!)

• GPU benefits: (very) high compute throughput

Pictured: my GeForce RTX 3080 Ti!



What is a GPU?

• Two classes of GPUs:

• Gaming/commodity. Aka what you buy for 
your gaming PC.

• Ex: Nvidia GeForce RTX 4080: >$999

• Data center. Aka what big companies like 
Google/Meta/OpenAI train/serve their 
DNN models on.

• Ex: Nvidia H100 GPU: ~$25k per card.

• Most heavy-duty DNN train machines 
have 8 GPUS, so ~$200K per machine.

• Aka Amazon Cloud + Nvidia is making the big bucks right now!

Pictured: Nvidia DGX-2 data center machine [link] at 

Nvidia's booth for CVPR 2018 (Salt Lake City!). Has 

16 Tesla V100 GPUs, likely worth several hundreds 

of thousands of USD!

https://www.nvidia.com/en-au/data-center/dgx-2/


Major GPU types

• As of 2024: in this course (and ~99% of ML/AI): 
we use Nvidia GPUs (CUDA, cuDNN). 

• DNN frameworks like pytorch have excellent 
support for Nvidia GPUs (CUDA)

• TPU ("Tensor Processing Unit"): A special type of 
"AI accelerator" hardware built by Google [link]

• Ex: Tensorflow, Google papers often use TPUs 
instead of Nvidia GPUs

• In Colab, you can choose either Nvidia GPU 
(eg T4) or a TPU.

• AMD is trying to enter the AI/ML market too 
(IMO, difficult to break in at the moment) Colab: T4 is Nvidia GPU, "TPU" is Google TPU

https://cloud.google.com/tpu?hl=en


Original GPU motivation

• Original intent: accelerate graphics 
processing, eg for computer graphics (CGI, 
Pixar) and video games (real-time graphics)

• Interested? Take CS 184! [link] Computer graphics and computer vision 
have a healthy relationship, lots of interesting overlap

• Motivation: graphics ultimately boils down to 
matrices and vectors. Need to accelerate 
matrix/vector computation, as the CPU wasn't 
enough back then (and still isn't now)

• Ex: a 3D point is represented as a 3D* 
vector, rotations/translations/scales are 
represented as 3x3 matrices.

https://leeyngdo.github.io/blog/computer-graphics/2024-02-29-graphics-pipeline/

https://vitaminac.github.io/Matrices-in-Computer-Graphics/

https://sciencebehindpixar.org/pipeline/rendering

* actually, we represent 3D points as a 4D vector [x, y, z, 1] 

("homogenous" coordinates), and transformation matrices as 4x4 

matrices, for good reasons (projective geometry). 

https://cs184.eecs.berkeley.edu/sp24
https://vitaminac.github.io/Matrices-in-Computer-Graphics/
https://vitaminac.github.io/Matrices-in-Computer-Graphics/
https://sciencebehindpixar.org/pipeline/rendering


What do GPUs excel at?

• GPUs can do a LOT of parallel computation, much more so than CPUs!

• CPU: Typically has 4-16 cores (up to 8-32 active threads with hyperthreading)

• GPU: A Tesla P100 GPU has 56 "Streaming Multiprocesesors", each with 2048 
active threads (up to 114688 active threads!)

• If your computation can be easily parallelized, then GPUs are very good 

• Fortunately, nearly all DNN code falls under this category!

• Matrix/vector calculations (Linear, Conv2d, Relu, Softmax, etc.)

• (2017) "Tensor Cores" [link] are an Nvidia hardware feature that further 
accelerates certain DNN operations, particularly for lower-precision datatypes 
like float16 ("mixed precision training")

https://en.wikipedia.org/wiki/Volta_(microarchitecture)


GPUs for ML

• AlexNet (2012) was an early (successful!) 
example of training a ConvNet on GPU hardware

• GPU acceleration caught on: DNN libraries began 
offering "first class" GPU support

• Caffe (2014): Developed at UC Berkeley. [link]

• Caffe2 (2017): Developed at Facebook. [link]

• Note: basically deprecated in favor of pytorch

• Tensorflow (2015): Developed at Google [link]

• Pytorch (2016+): Developed at Facebook [link]

As of 2024, Pytorch and Tensorflow are the top DNN frameworks in use at both industry 

and academia. Personally: I prefer pytorch, but each has their strengths and weaknesses.

https://caffe.berkeleyvision.org/
https://caffe2.ai/
https://www.tensorflow.org/
https://pytorch.org/tutorials/beginner/saving_loading_models.html


Nvidia: CUDA

• CUDA: Compute Unified Device 
Architecture

• Low-level library that tells the GPU how 
to compute your desired code.

• CUDA code is basically C code

• Main idea: you write CUDA code that 
expresses your computation in a 
"parallelizable" way, to effectively utilize 
the GPU's many execution threads

• Writing performant parallel code is an 
art! 99% of the time ML devs don't 
have to worry about this

__global__
void add(int n, float * x, float * y) {

int index = threadIdx.x;
int stride = blockDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}

Pictured: element-wise vector addition 

CUDA code. Vector-addition is easily 

parallelizable, so we can chunk up the input 

arrays ("blocks") and dispatch each block to 

different GPU execution threads to process 

in parallel!



Nvidia cuDNN

• cuDNN: an Nvidia library built on top of 
CUDA to provide high-performance DNN 
kernels (like optimized linear 
forward/backward, conv2d fwd/bkwd, etc)

• DNN frameworks like pytorch, tensorflow
ultimately compile down to CUDA code 
(often via cuDNN calls) which is what 
actually runs on your GPU!



Pytorch + GPUs

• Pytorch makes it easy to use GPUs in your pytorch code!

• Terminology: all Tensors live on a `torch.device` [link]

• By default: CPU device: `torch.device("cpu")`

• GPU (cuda): torch.device("cuda")

• (If your machine has multiple GPUs) torch.device("cuda:0"), torch.device("cuda:1"), ...

• Main principle: when doing an operation involving two tensors, both tensors must 
be on the same device!

Tensor(CPU) + Tensor(CPU): OK!

Tensor(GPU) + Tensor(GPU): OK!
Tensor(CPU) + Tensor(GPU): ERROR!

https://pytorch.org/docs/stable/tensor_attributes.html#torch.device


Pytorch example code: Tensor devices

# create tensor directly on cuda device
my_zeros_cuda = torch.zeros(size=[2, 3], device=torch.device("cuda:0"))
# create tensor on CPU, but move it to GPU (CPU -> GPU copy)
my_ones_cpu = torch.ones(size=[2, 4])
my_ones_cuda = my_ones_cpu.to(device=torch.device("cuda:0"))

# if you have multiple gpus, can send a tensor to a specific one
my_ones_cuda_device0 = my_ones_cpu.to(device=torch.device("cuda:0"))
my_ones_cuda_device1 = my_ones_cpu.to(device=torch.device("cuda:1"))

# finally, can send a tensor from GPU back to CPU
my_ones_cuda_to_cpu = my_ones_cuda.to(device=torch.device("cpu"))

# Beware: when doing ops between two tensors, they both most be on the 
same device!
# RuntimeError: Expected all tensors to be on the same device, but found 
at least two devices, cuda:0 and cpu!
my_ones_cpu + my_ones_cuda # ERROR

CPU

Memory

my_ones_cpu

GPU:0

Memory

my_ones_gpu

CPU -> GPU 

device copy



Pytorch example code: module.to(device)
import torch, torch.nn as nn
class Autoencoder(nn.Module):

def __init__(self, out_channels_first: int = 16):
super().__init__()
self.encoder = nn.Sequential( # like the Composition layer you built

nn.Conv2d(1, out_channels_first, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(out_channels_first, 32, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 7)

)
self.decoder = nn.Sequential(

nn.ConvTranspose2d(64, 32, 7),
nn.ReLU(),
nn.ConvTranspose2d(32, out_channels_first, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(out_channels_first, 1, 3, stride=2, padding=1, output_padding=1),
nn.Sigmoid()

)
def forward(self, x):

x = self.encoder(x)
x = self.decoder(x)
return x

def print_statedict_info(module: torch.nn.Module):
for param_key, param_val in module.state_dict().items():

print(f"param_key={param_key}: {param_val.shape}, device={param_val.device}")

model_a = Autoencoder()
print("CPU module")
print_statedict_info(model_a)
model_a_gpu = model_a.to(device=torch.device("cuda:0"))
print("GPU module")
print_statedict_info(model_a_gpu)

(venv) PS 

C:\Users\Eric\teaching\data_c182_fall2024\src\lectures\lecture19> python 

.\module_gpu_demo.py

CPU module

param_key=encoder.0.weight: torch.Size([16, 1, 3, 3]), device=cpu

param_key=encoder.0.bias: torch.Size([16]), device=cpu

param_key=encoder.2.weight: torch.Size([32, 16, 3, 3]), device=cpu

param_key=encoder.2.bias: torch.Size([32]), device=cpu

param_key=encoder.4.weight: torch.Size([64, 32, 7, 7]), device=cpu

param_key=encoder.4.bias: torch.Size([64]), device=cpu

param_key=decoder.0.weight: torch.Size([64, 32, 7, 7]), device=cpu

param_key=decoder.0.bias: torch.Size([32]), device=cpu

param_key=decoder.2.weight: torch.Size([32, 16, 3, 3]), device=cpu

param_key=decoder.2.bias: torch.Size([16]), device=cpu

param_key=decoder.4.weight: torch.Size([16, 1, 3, 3]), device=cpu

param_key=decoder.4.bias: torch.Size([1]), device=cpu

GPU module

param_key=encoder.0.weight: torch.Size([16, 1, 3, 3]), device=cuda:0

param_key=encoder.0.bias: torch.Size([16]), device=cuda:0

param_key=encoder.2.weight: torch.Size([32, 16, 3, 3]), device=cuda:0

param_key=encoder.2.bias: torch.Size([32]), device=cuda:0

param_key=encoder.4.weight: torch.Size([64, 32, 7, 7]), device=cuda:0

param_key=encoder.4.bias: torch.Size([64]), device=cuda:0

param_key=decoder.0.weight: torch.Size([64, 32, 7, 7]), device=cuda:0

param_key=decoder.0.bias: torch.Size([32]), device=cuda:0

param_key=decoder.2.weight: torch.Size([32, 16, 3, 3]), device=cuda:0

param_key=decoder.2.bias: torch.Size([16]), device=cuda:0

param_key=decoder.4.weight: torch.Size([16, 1, 3, 3]), device=cuda:0

param_key=decoder.4.bias: torch.Size([1]), device=cuda:0
Takeaway: model.to(device=device) copies all of the model 

parameters to the target device (eg all weight/bias params)



GPU memory: limited resource

• Beware: GPUs have a limited amount of memory. Exceeding GPU memory will 
lead to your train run being killed with a "GPU out of memory" error!

• Question: when training a DNN model, what are the main uses of GPU memory?

• Model weights. Ex: Linear's weight/bias parameters.

• Intermediate activations. If your model has N Conv2d's, then there will be N 
activation feature maps that pytorch has to keep track of that uses up GPU 
memory!

• Scales linearly with your batch_size!

• Gradients. Calculated during backwards()

• Additional optimizer state. Ex: Adam requires `2*num_model_params` 
additional values (gradient moving avg, squared gradient moving avg)



Training model on GPU: Change 1/2

• Taking a CPU pytorch training code and migrating it to the GPU is (often) 
very easy, a one-line(s) change!

• Change 1: Move model (eg its model parameters) to the GPU device

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#train-the-network

# Create model (on CPU first, by default)
net = Net(hidden_num_chans=model_hidden_num_chans)

# Move model to GPU (if available to pytorch)
device_gpu_maybe = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")

print(f"(pre net.to) GPU max_memory_allocated: {torch.cuda.max_memory_allocated() / 1e6} MB")
net_gpu_maybe = net.to(device=device_gpu_maybe)
print(f"(post net.to) GPU max_memory_allocated: {torch.cuda.max_memory_allocated() / 1e6} MB")

(pre net.to) conv1.weight.device: cpu
(pre net.to) GPU max_memory_allocated: 0.0 MB
(post net.to) GPU max_memory_allocated: 0.481792 MB
(post net.to) conv1.weight.device: cuda:0

Note: 

`torch.cuda.max_memory_allocated()` 

tells us how much GPU memory 

we've used. This tells us that our 

model parameters takes up 0.48 MB 

of GPU memory. Neat!
Huzzah, our layers 

are on the GPU!

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#train-the-network


Training model on GPU: Change 2/2

• Change 2: move all model inputs (including targets/labels!) to the GPU before 
calling forward

def train_model(model: torch.nn.Module, optimizer, criterion, trainloader, num_epochs: int, device: 
torch.device) -> torch.Tensor:

for epoch in range(num_epochs): # loop over the dataset multiple times
running_loss = 0.0
for ind_batch, data in enumerate(trainloader, 0):

# get the inputs; data is a list of [inputs, labels]
# Note: dataloader outputs inputs, labels as CPU tensors
inputs, labels = data
inputs = inputs.to(device=device)
labels = labels.to(device=device)

# zero the parameter gradients
optimizer.zero_grad()

# forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels)

`device` is our GPU device (or CPU 

device if we don't have a GPU!)

Implementation tip: this code is 

"device agnostic", in that it works for 

both CPU and GPU contexts (just 

pass in device=torch.device("cpu") 

or device=torch.device("cuda:0")). 

This is the way!

Since `model` is on GPU, and 

`inputs, labels` are on GPU, we 

won't have errors like "mismatch 

device"



Demo: pytorch CPU vs GPU (single GPU)

• Demo: gpu_train_example.py

(venv) PS 
C:\Users\Eric\teaching\data_c182_fall2024\src\lectures\lec
ture19> python .\gpu_train_example.py
Files already downloaded and verified
Files already downloaded and verified
batchsize=64, model_hidden_num_chans=128, 
num_dataloader_workers=2
(CPU) Begin training (120078 model params)
(CPU) Finished Training (33.91305661201477 secs, 
1474.3584033733462 imgs/sec)
(pre net.to) GPU max_memory_allocated: 0.0 MB
(post net.to) GPU max_memory_allocated: 0.481792 MB
(GPU) Begin training (120078 model params)
(post train_model) GPU max_memory_allocated: 96.306688 MB
(GPU) Finished Training (9.31104588508606 secs, 
5369.966018542273 imgs/sec)

Device Batchsize Train 

throughput

CPU 64 1474 imgs/sec

GPU 64 5369 imgs/sec



Demo: pytorch CPU vs GPU (single GPU)

• Interestingly: the CPU doesn't always 
outperform the GPU! (here it does, but there are settings where it doesn't)

• A few rules of thumb:

• Model should be big enough

• Batchsize needs to be big enough too! 

• Reason: too small model/batchsize means 
you spend most of your time doing CPU<-
>GPU communication, leading to poor GPU 
utilization

• GPU's ideal computing mode: operate on 
large data "all at once" (aka large batches), 
rather than small data one-at-a-time. 

Device Batchsize Train 

throughput

CPU 64 1474 imgs/sec

GPU 64 5369 imgs/sec

CPU 4 1350 imgs/sec

GPU 4 1633 imgs/sec

CPU 2 860 imgs/sec

GPU 2 937 imgs/sec



Multi-GPU

• When working with large models + large datasets, we want to keep scaling up, 
ideally by throwing more compute (aka hardware, aka $) at the problem

• Horizontal scaling: add more compute (machines, GPUs)

• Vertical scaling: make each individual GPU faster

• Both are important! But at a given time, horizontal scaling is quicker+easier to do



Multi-GPU

• Fortunately, we can easily* attach multiple GPUs to a single machine at a time

• Example: AWS EC2 p4d.24xlarge cloud instance type has 8 NVIDIA A100 Tensor 
Core GPUs, each with 40 GB GPU memory (quite large as of 2024!)

• This is what many people in industry use to train large models (including my team). As of 2024-11, costs ~$290k per year to rent one!

• Engineering Question: how to effectively utilize multiple GPUs on a single 
machine for training DNN models?

• For simplicity: assume that all GPUs on a single machine are all the same type, 
eg same exact model (in practice this is true 99% of the time)

* Turns out that it's non-trivial to efficiently attach multiple GPUs on a 

single machine. See: Nvidia NVLink [link]

https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/


Multi-GPU: Scenario 1

• Suppose our machine has 8 GPUs, 
and our DNN model (and 
activations) can fit on a single GPU. 

• Question: if we wanted to maximize 
training throughput, what's one way 
we can utilize the 8 GPUs?

• Answer: load the model onto all 8 
GPUs separately, and have each 
GPU do their own forward/backward 
passes in parallel!

GPU:0

Memory

model_weights

GPU:1

Memory

model_weights

GPU:2

Memory

model_weights

GPU:3

Memory

model_weights

...

Train loop 

(forward, 

backward)

Train loop 

(forward, 

backward)

Train loop 

(forward, 

backward)

Implementation Note: each GPU trainer gets its own training Dataloader. Take 

care to ensure that each Dataloader splits up the training dataset appropriately 

(ex: don't want all N GPU workers to train on the same batches!)



Multi-GPU: Scenario 1
GPU:0

Memory

model_weights

GPU:1

Memory

model_weights

GPU:2

Memory

model_weights

...

Train loop 

(forward, 

backward)

Train loop 

(forward, 

backward)

Train loop 

(forward, 

backward)

Question: suppose each GPU worker has different training dataset splits 

(aka each GPU worker operates on different train batches).

After N training batches, will the model parameters be the same across all 

GPU workers?

Answer: Nope! Each GPU worker's train loop will process different batches, 

thus the gradients for GPU:0 will be different than GPU:1, resulting in different 

model weights for each worker. This complicates things!

Question: how can we ensure that, after each training batch (for all N GPUs), 

the model_weights are the same ("in sync") for all N GPUs?

Answer: one popular way is to aggregate all of the GPU 

worker's gradients (average), then have each GPU worker 

apply the same aggregated ("global average") gradient. 

Ensures that model_weights is the same on all GPU workers!



Multi-GPU: Aggregate gradients
GPU:0

Memory

model_weights

GPU:1

Memory

model_weights

GPU:2

Memory

model_weights

...

Train loop 

(forward, 

backward)

Train loop 

(forward, 

backward)

Train loop 

(forward, 

backward)

Aggregate 

gradients

(Average)

Gradient for 

GPU:0

Gradient for 

GPU:1

Gradient for 

GPU:2

GPU:0

Memory

model_weights

GPU:1

Memory

model_weights

GPU:2

Memory

model_weights

...

Apply 

gradient

Train loop 

(forward, 

backward)

Train loop 

(forward, 

backward)

Aggregate 

gradients

(Average)

Global 

averaged 

gradient

Global 

averaged 

gradient

Global 

averaged 

gradient

Step 1: Aggregate incoming gradients Step 2: Apply global averaged gradient

Note: there exist other more efficient, 

cleverer ways of optimizing this. Ex: NCCL's 

ring, tree algorithms: [link]

https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/#ref1


Pytorch: DistributedDataParallel (DDP)

• Enter: torch.nn.parallel.DistributedDataParallel (or DDP) [link]

• DDP does exactly what we proposed! Consists of two parts:

• Model copy. copy the initial model weights to each GPU, via `.to(device)`

• Gradient synchronization. adds a "hook" to the backwards() pass to calculate 
the aggregated gradients across all GPUs (via averaging)

• This ensures that all GPUs use the same gradients for each step, which 
ensures that each GPU always has the same model weights

• Each GPU processes their own batches independently

• For 8 GPUs, you've effectively increased your batchsize by 8x!

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html


Terminology: world_size, rank

• world_size: the total number of workers. Ex: total number of GPUs

• rank: an integer between [0, world_size-1] (inclusive). 

• Setup: each GPU will be assigned a "rank" and the "world_size", and will use this 
metadata to perform its job

• Ex: Suppose world_size is 8.

• A GPU worker assigned rank=0 will use GPU0: `torch.device("cuda:0")`

• Rank=1 will use GPU1: `torch.device("cuda:1")`

• ...

• Rank=7 will use GPU7: `torch.device("cuda:7")`



DDP in pytorch
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP

class ToyModel(nn.Module):
def __init__(self):

super(ToyModel, self).__init__()
self.net1 = nn.Linear(10, 10)
self.relu = nn.ReLU()
self.net2 = nn.Linear(10, 5)

def forward(self, x):
return self.net2(self.relu(self.net1(x)))

def demo_basic():
dist.init_process_group("nccl")
rank = dist.get_rank()
print(f"Start running basic DDP example on rank {rank}.")
# create model and move it to GPU with id rank
device_id = rank % torch.cuda.device_count()
model = ToyModel().to(device_id)
ddp_model = DDP(model, device_ids=[device_id])
loss_fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

optimizer.zero_grad()
outputs = ddp_model(torch.randn(20, 10))
labels = torch.randn(20, 5).to(device_id)
loss_fn(outputs, labels).backward()
optimizer.step()
dist.destroy_process_group()
print(f"Finished running basic DDP example on rank {rank}.")

if __name__ == "__main__":
demo_basic()

# use torch_elastic to launch script N times, one
# for each GPU worker
# --nnodes: number of nodes. For us, 1 machine
# --nproc_per_node: number of GPUs. For us: 8
torchrun --nnodes=1 --nproc_per_node=8 --rdzv_id=100 --
rdzv_backend=c10d --rdzv_endpoint=$MASTER_ADDR:29400 
elastic_ddp.py

For more info, see: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

`device_id` is the assigned GPU 

device to use: f"cuda:{device_id}"

Wrap model on DDP()

Can use `ddp_model` just like 

regular `model`! Very convenient.

Boilerplate code to initialize 

distributed backend (NCCL)

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html


DDP: sync and all_reduce (NCCL)

• An important part of DDP is the gradient synchronization

• For N GPUs, each GPU will independently perform their own "local" 
forward/backwards pass to calculate N different gradient updates

• DDP's job is to take all N gradient updates, average them, then transmit this 
aggregated gradient to all N GPUs so that each GPU can perform their weight 
updates.

• Common name for this operation: "all_reduce"

• Pytorch supports dispatching the all_reduce call to a variety of libraries [link]

• For Nvidia GPUs: use NCCL [link]

https://pytorch.org/docs/stable/distributed.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/operations.html


Multi-GPU: Scenario 2

• Suppose our machine has 8 GPUs, and 
our DNN model (and activations) can't 
fit on a single GPU. 

• Question: how can we utilize the 8 
GPUs to train our DNN model?

• Answer: split the model up across 
multiple GPUs!

• Question: what downsides can you 
think of?

• Answer: slower training, due to 
additional cross-GPU communication

GPU:0

Memory

weights_part_a

MyDNNModel

weights_part_a

weights_part_b

weights_part_c

GPU:1

Memory

weights_part_b

GPU:2

Memory

weights_part_c



Pytorch: FullyShardedDataParallelism (FSDP)

• Pytorch's FSDP implements this "model sharding" idea [link]

• Implementation challenge: how to distribute model parameters (eg layers) in a 
way that minimizes cross-gpu device copies?

• Heuristic: FSDP works well for very large models, eg when model weights are a 
substantial fraction of available GPU memory

• FSDP is also handy to increase total batchsize at the expense of some efficiency

https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html


DDP vs FSDP

Name Impact on: GPU memory Impact on: Train 

throughput

When to use?

DistributedDataParallel

(DDP)

For N GPUs, model 

weights are duplicated N 

times (waste). Con!

Each GPU does 

forward/backward 

independently: no cross-

GPU communication 

required (except for 

all_reduce). Pro!

If your model+activations

comfortably fits in GPU 

memory AND you are 

happy with your current 

batch_size

FullyShardedDataParallel

(FSDP)

Model weights are 

instantiated only once 

(split across N GPUs). 

Pro!

Training throughput is 

worse due to cross-GPU 

communication. Con!

If your model can't fit on a 

single GPU: MUST use 

FSDP.

Or: if you need a higher 

batchsize but it won't fit 

with DDP: try FSDP!



Multi-Node, Multi-GPU: DDP

• Suppose we have M machines, each with N GPUs. How to effectively utilize this for 
training DNN models? 

• Fortunately, the earlier principles generalize quite nicely!

• DDP: 

• M=1 machine, N GPUs: all_reduce across GPUs (within a single machine)

• M>1 machines, N GPUs each: all_reduce across ALL GPUs

• Involves cross-machine communication during gradient sync!

• FSDP

• M=1 machine, N GPUs: split model parameters across N GPUs

• M>1 machines, N GPUs each: split model parameters across M*N GPUs

• Involves cross-machine comm during forward/backward



DDP in pytorch (multi-node)
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP

class ToyModel(nn.Module):
def __init__(self):

super(ToyModel, self).__init__()
self.net1 = nn.Linear(10, 10)
self.relu = nn.ReLU()
self.net2 = nn.Linear(10, 5)

def forward(self, x):
return self.net2(self.relu(self.net1(x)))

def demo_basic():
dist.init_process_group("nccl")
rank = dist.get_rank()
print(f"Start running basic DDP example on rank {rank}.")
# create model and move it to GPU with id rank
device_id = rank % torch.cuda.device_count()
model = ToyModel().to(device_id)
ddp_model = DDP(model, device_ids=[device_id])
loss_fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

optimizer.zero_grad()
outputs = ddp_model(torch.randn(20, 10))
labels = torch.randn(20, 5).to(device_id)
loss_fn(outputs, labels).backward()
optimizer.step()
dist.destroy_process_group()
print(f"Finished running basic DDP example on rank {rank}.")

if __name__ == "__main__":
demo_basic()

# use torch_elastic to launch script N times, one
# for each GPU worker
# --nnodes: number of nodes. For us, 4 machines
# --nproc_per_node: number of GPUs. For us: 8
torchrun --nnodes=4 --nproc_per_node=8 --rdzv_id=100 --
rdzv_backend=c10d --rdzv_endpoint=$MASTER_ADDR:29400 
elastic_ddp.py

For more info, see: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

Other than that, everything is nearly the same! Pytorch

set things up nicely so that very little has to change 

when scaling from M=1 machines to M=4 machines. 

The world_size/rank abstraction makes things very 

convenient :)

Now, `rank` spans multiple machines. 

Ex: if each machine has 8 GPUs, then:

Rank=[0, 1, ..., 7]: Machine 0

Rank=[8, 9, ..., 15]: Machine 1

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html


Example: "Train ImageNet in 1 hour"

• In "Accurate, Large Minibatch SGD: Training 
ImageNet in 1 Hour" (2018) [link] the authors, 
using a large distributed GPU cluster, trained a 
ResNet-50 model on ImageNet-1k "from 
scratch" in one hour. A neat accomplishment for 
that time!

• Hardware: 256 GPUs ("Big Basin" [link] GPU cluster internal to 

Facebook, 16GB GPU mem per card. Nvidia Tesla P100). 

• Distributed training setup: basically DDP (they 
used Caffe2, not pytorch, but same idea)

https://arxiv.org/abs/1706.02677
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/


Learning rate: Linear scaling rule

• Learning: when scaling up the 
number of GPUs (aka increasing 
the effective batchsize), one must 
adjust the learning rate accordingly 
("linear scaling rule").

• Rule: double the batchsize -> 
double the learning rate.



Gradient quality vs num steps?

• Observation: if you keep the number training 
epochs fixed, then increasing the batchsize
leads to fewer model updates.

• Higher batchsize -> higher quality gradient 
updates, but fewer parameter updates

• Lower batchsize -> noisier gradient 
updates, but more parameter updates.

• What is best? Paper's answer: higher 
batchsize AND higher learning rate.

• ...to a point. Beyond batchsize=8k, 
classification error starts increasing.



"Train ImageNet in 1 hour": Hardware advances

• A sign that GPU hardware (and DNN libraries + distributed training frameworks) 
is advancing quickly

• ...And, a hint that ImageNet-1k is starting to feel small!

• (later in Aug 2018, someone showed we can train ImageNet in 18 mins for $40 
using AWS cloud! [link])

• In 2024, I bet things are even faster + cheaper! Technology marches on...

https://www.fast.ai/posts/2018-08-10-fastai-diu-imagenet.html


Tangent: Learning rate schedules

• So far in this class, we've used a single learning rate. 
In practice, it's better to use learning rate schedules

• Start learning rate small, then gradually ramp it up to 
a larger value (eg the first ~100 iterations)

• Intuition: starting learning rate too high often leads 
to training divergence (eg NaN losses). Thus, we 
start it low to get the model weights in a "healthy" 
region, then slowly increase the learning rate

• Over the course of training, decay the learning rate

• Intuition: during early parts of training, model 
needs to make big steps (high LR). But, near the 
end of training, model is focusing on finer-grained 
details (small LR).

https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-

classification-networks-d5f0bffb242d

https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-classification-networks-d5f0bffb242d
https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-classification-networks-d5f0bffb242d


(unused) CUDA example: element-wise vector 
addition

__global__
void add(int n, float * x, float * y) {

int index = threadIdx.x;
int stride = blockDim.x;
for (int i = index; i < n; i += stride)

y[i] = x[i] + y[i];
}

Consider: elementwise-vector addition. Given two 

vectors x, y (with shape=[N]), output (x+y).

This is an "embarrassingly parallel" problem: chunk up 

the input vectors into K chunks, and process each 

chunk independently in parallel!

To learn more, see: https://developer.nvidia.com/blog/even-easier-introduction-

cuda/

Ex: for vector element-wise addition, one way to 

do it ("embarassingly parallel"): 

- Break the input vector into numBlocks chunks

- within each block, have a separate thread 

perform a single `y[i] = a[i] + b[i]`

Here, we divide the input array into blocks. 

Within each block, we assign threads to each 

block element.

https://developer.nvidia.com/blog/even-easier-introduction-cuda/
https://developer.nvidia.com/blog/even-easier-introduction-cuda/
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