
Speaker: Eric Kim

Lecture 17: Visual Transformer, 
Masked auto encoder
Data C182 (Fall 2024). Week 11. Tuesday Nov 5th, 2024

1
Rev01: 2024-11-05 7:58 PM PST



Announcements

• HW03 ("Transformers + NLP") out! Due: Fri Nov 22nd 11:59 PM PST

• Please start early!

• Midterm regrade requests due: Fri Nov 8th, 11:59 PM PST

• Midterm stats: [link]

• "Course Grade Guidance": [link]

2

https://edstem.org/us/courses/64085/discussion/5613233
https://edstem.org/us/courses/64085/discussion/5613422


Today's lecture

• Visual Transformer

• Masked auto encoder



Context: Transformers

• Context: it's 2021. CNN's are still the 
dominant computer vision model arch.

• "Attention is all you need" (Vaswani et al 
[link]) came out in NIPS 2017. Its 
"transformers" model architecture is 
causing a revolution in NLP

• Natural question: can we apply 
transformers to the computer vision 
domain? Say, image classification?

https://arxiv.org/abs/1706.03762


Visual Transformer (2021)

• Enter: the Visual Transformer (ViT)

• "An Image is Worth 16x16 Words: Transformers for Image 
Recognition at Scale" (Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai et al) [link]. 
ICLR 2021

• Idea: represent an image as a sequence 
of [16x16] patches, left-to-right, top-to-
bottom ("raster" order),

• Pass this image sequence to a 
transformer encoder, and train an 
image classifier on top of it!

• Results: achieved state-of-the-art results 
on ImageNet-1k vs CNN-based methods 
like ResNets

Earlier, we've discussed (in detail!) the 

mechanical details of how transformer 

encoders work. Now, let's dig into the 

training methodology!

"0" token is basically 

BERT's CLS token!

https://arxiv.org/abs/2010.11929


Inductive bias

• Definition: "inductive bias" of a model is an 
architecture-level inclinations towards 
certain kinds of phenomenon/behavior.

• Example: CNN's have a strong inductive
bias towards local, translation-invariant 
features, due to Conv2d being translation-
invariant.

• But: sometimes, we want our features to 
be a mix of local+global

• Also: the high-level semantic CNN 
features tend to also have poor spatial 
resolution (due to the feature-map 
downsampling after each Conv block)

https://medium.com/@saba99/feature-map-35ba7e6c689e

Filters @ Layer 1:

edge detectors?

Filters @ Layer 2:

ears? noses?

https://medium.com/@saba99/feature-map-35ba7e6c689e


ViT: less inductive bias

• A selling point for ViT is that it has 
"less" inductive bias than CNN's

• Ex: at each transformer encoder
block, each token (aka image patch) 
can interact with (aka "attend to") 
every other image patch in the image

• Implication: this means that ViT can, 
at every transformer layer, learn 
features that involve information from 
any part of the image

• In contrast: CNN's can only learn
features based off of spatially local 
information ("receptive field")

Interesting observation: in early transformer 

layers, some heads use global information, 

and some use mostly local information.

CNN's can only use local info!



Concat

ViT Implementation details: "image_patchify()"

• Goal: represent an image 
[chans, height_img, width_img] 
as a sequence with shape 
[seq_len, dim].

• Idea: grid up image into patches!

• Tip: patch_size is typically 16x16. 
Generally, passing in larger 
image resolutions (eg longer seq 
lens) leads to better task 
performance, but is more 
expensive/slower to 
train/inference on (tradeoff!)

(1) grid up the image into 

[patch_size x patch_size] 

patches 

(2) Extract an embedding for each 

patch (with dimensionality `dim`)

(3) Concat all patch embeddings 

into a single [seq_len, dim] tensor.

seq_len is total number of patches. Ex: 

for a square image: seq_len = 

ceil(height_img / patch_size) ** 2

Ex: for a 224x224 image and  

patch_size=16: seq_len = 196.



Tangent: einops

• ViT implementations often use a 
library called "einops" for 
image_patchify()

• einops: "Einstein-Inspired Notation 
for operations"

• (for you physics fans) notation is loosely 
inspired by Einstein summation [link] (ex: 
einops.einsum)

• Purpose: make it easier (and 
safer/more-explicit) to do certain 
operations with multidimensional 
tensors (like reshaping)

• Useful tutorials: [link1] [link2] [link_github]

(Will be useful for HW04!)

https://en.wikipedia.org/wiki/Einstein_notation
https://einops.rocks/1-einops-basics/
https://einops.rocks/pytorch-examples.html
https://github.com/arogozhnikov/einops


ViT: Training methodology

• At this point: you know how to 
mechanically implement the ViT model

• Image_patchify() + transformer encoder 
classifier

• It turns out: this is only part of the story!

• The remaining "secret sauce": the training 
methodology + dataset. 

• A recent trend in academia and industry:
improvements in dataset quality/scale 
often trumps architecture tweaks

• Followup: massively scaling up both
dataset size and model capacity = wins!

"0" token is basically 

BERT's CLS token!



Context: ImageNet-1K

• ImageNet-1K [link] is the de-facto academic 
image classification dataset

• 1000 categories, 1,281,167 training images, 
50,000 validation images and 100,000 test 
images

• During its prime time, it was the largest-scale 
image classification dataset

• History:

• 2006: Fei-Fei Li [link] began working on the idea for 
ImageNet

• 2009: ImageNet poster presentation (CVPR 2009 [link])

• 2010: First ImageNet Large Scale Visual Recognition 
Challenge

https://www.image-net.org/index.php
https://en.wikipedia.org/wiki/Fei-Fei_Li
https://web.archive.org/web/20210115185228/http:/www.image-net.org/papers/imagenet_cvpr09.pdf


ImageNet-1k, ImageNet-21k, JFT-300M

• ImageNet-1k (2010): main ImageNet release

• Human annotated

• 1.2M training images, 1000 categories

• ImageNet-21k (2010): superset of ImageNet-1k

• 14M training images, 21,841 categories

• JFT-300M (2017): image classification dataset 
from Google [link]

• 300M training images, 18,000 categories

• Collected semi-automatically

• Downside: proprietary closed-source dataset private just to 
Google :(

https://arxiv.org/abs/1707.02968


Dataset trends

• Observation: lots of work in scaling up image 
classification model architectures (eg CNNs like 
ResNet), but not a lot of work in scaling up 
datasets

• "Let's just use ImageNet-1k since everyone 
else uses it"

• Idea: does anything change if we dramatically 
increase our training dataset size?

• Followup: what if we both increase the dataset 
size AND the model size? (...foreshadowing for ViT...)

https://arxiv.org/abs/1707.02968

https://arxiv.org/abs/1707.02968


ViT: dataset ablations

• (back to ViT)

• When training+testing on ImageNet-1k, 
CNNs are better than ViT!

• What?! I thought transformers were The Best Thing?

• But: when training on ImageNet-21k 
(and, JFT-300M) and testing on 
ImageNet-1k: ViT outperforms CNNs

• Takeaway: transformers (like ViT) are 
most effective when trained on LOTS of 
data



Scaling up datasets: challenges

• The primary challenge with scaling up 
datasets like ImageNet is: getting high-
quality human labels at scale is very 
expensive, both in terms of $ and 
time+effort.

• However, we've seen that transformer 
model architectures (like ViT) are data 
hungry, and require lots of training data 
to realize its potential

• If collecting human annotations is too 
expensive, what are our alternatives?

• Idea: can we create an image dataset 
without any human annotations?

https://supervisely.com/labeling-toolbox/images/

https://supervisely.com/labeling-toolbox/images/


Tangent: learning paradigms

• So far in this class, we've focused on supervised training: Given a dataset, each 
row has an input and a ground-truth label.

• Ex: image classification, object detection, machine translation

• However, there are other training paradigms!

Classification: Image + 

label

Detection: Image + 

boxes
Segmentation: Image + 

masks

I am sleepy (EN) -> 

j'ai sommeil (FR)

Translation: Text for 

language A and 

language B



Unsupervised learning

• Unsupervised: dataset has NO labels

• Ex: clustering algorithms (k-means)

https://keytodatascience.com/k-means-clustering-algorithm/

https://keytodatascience.com/k-means-clustering-algorithm/


Self-supervised learning

• Self-supervised: create our own labels based on the input (no human labeling 
required!)

• NLP "fill in the blank": given a sentence, randomly blank out some words. Ask text 
model to predict the removed words. ("cloze" task [link])

• Ex: "Today, I went to the ______ and bought some milk and eggs."

• Target: "store"

• Pro: it's really easy to scrape tons of text data from the internet, and very easy 
to construct cloze examples. ("unlimited" training data for free!)

https://en.wikipedia.org/wiki/Cloze_test


Why self-supervised?

• Motivation ("the dream"): training 
a model on large self-supervised 
datasets leads to a stronger 
"starting point" for downstream 
applications (eg classification)

• Intuition: pretraining a model on 
self-supervised tasks lets the 
model learn "something" about 
the visual/text world. Then, fine-
tuning starts off from a "strong" 
starting point (doesn't have to 
start from scratch!)

Pytorch documentation on model.save(), model.load(): [link]

# Create model (randomly init'd)
model = create_model()
# Download pretrained model weights 
# Ex: pretrained on self-supervised task
model_pretrained_weights = download_pretrained_weights()
# Load pretrained weights into our model
model.load(model_pretrained_weights)
# Fine-tuning: train starting from pretrained weights
train_model(model, dataset)

https://pytorch.org/tutorials/beginner/saving_loading_models.html


Self-supervised: computer vision

• Question: how do we apply the 
"Fill in the blank" task from NLP 
to computer vision?

• Answer: "Fill in the pixels!"

• How do we design a DNN to 
predict pixel values (rather 
than classification labels)?

For each group: (left) image with 

blanked-out pixels (middle) model 

predictions (right) ground truth image

https://arxiv.org/abs/2111.06377

Ex: "Today, I went to the ______ and 

bought some milk and eggs."

Target: "store"

https://arxiv.org/abs/2111.06377


Background: Autoencoders

• Autoencoders are a classic, well-
studied technique

• Idea: transform an input (eg image, 
text) into a latent representation 
(aka embedding), and then 
reconstruct the input from the 
latents

• Encoder: Given image, transform 
into an embedding(s) (aka latent)

• Decoder: Given latent 
representation, reconstruct 
original image

https://lilianweng.github.io/posts/2018-08-12-vae/

Aka z is an embedding 

representation of the input 

image

Foreshadowing: this 

sounds like transformer 

encoder/decoder!

https://lilianweng.github.io/posts/2018-08-12-vae/


Background: Autoencoders

• Question: suppose we had a model 
architecture like the one on the right. What is 
an appropriate loss function?

• Answer: mean-squared error between the 
input image and the reconstructed image 
(model output)! Aka pixel-error aka 
"reconstruction error".

• Mean Squared Error (MSE) aka L2 norm

• Mean Absolute Error (MAE): L1 norm

https://lilianweng.github.io/posts/2018-08-12-vae/

Aka z is an embedding 

representation of the input 

image

𝑙𝑜𝑠𝑠𝑙2 = 𝑥 − 𝑥′ 2

𝑙𝑜𝑠𝑠𝑙1 = 𝑥 − 𝑥′ 1Fun fact: L1 norm tends to encourage sparsity in its output 

reconstruction errors (aka more 0 values, aka more exact matching), 

but L2 norm encourages overall fit. To learn more, see: [link]

https://lilianweng.github.io/posts/2018-08-12-vae/
https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6


Training Autoencoders

• To train an autoencoder, we can 
easily construct a training dataset: we 
just need a source of images. No 
labeling required!

• Ex: scrape Google Images / 
Pinterest / etc.

• Given an image, the target is the 
image itself! Very nice.



A simple autoencoder model architecture

• Question: design a model architecture that given an 
image (say, a 224x224 RGB image), implements the 
autoencoder idea.

• Answer: many possible, but here's one:

Conv

Block

Conv

Block

CNN feat maps.

shape=[chans, f_height, f_width]

Ex: a resnet conv block 

(repeated conv2d, relu, 

batchnorm)

Reshape 0.1 0.3 ... -1.2

Shape: 

[chans*f_height*f_width]

Embedding z

0.1 0.3 ... -1.2

Shape: 

[chans*f_height*f_width]

Embedding z

After each block, we 

downsample the featmaps by 2x

Shape: [chans, f_height, f_width]

Reshape
Upsample

Block

After each block, we upsample

the featmaps by 2x

Encoder

DecoderUpsample

Block

Note: technically we don't need to do the 

Reshape, but I'll do it here to be 

consistent with the above figure
Our reconstructed output!



Transposed Convolution

• How to implement the "Upsample block"?

• Transposed Convolutions, aka "learned upsampling" (pytorch: torch.nn.ConvTranspose2d [link])

Conv

Block

Conv

Block

CNN feat maps.

shape=[chans, f_height, f_width]

Ex: a resnet conv block 

(repeated conv2d, relu, 

batchnorm)

Reshape 0.1 0.3 ... -1.2

Shape: 

[chans*f_height*f_width]

Embedding z

0.1 0.3 ... -1.2

Shape: 

[chans*f_height*f_width]

Embedding z

After each block, we 

downsample the featmaps by 2x

Shape: [chans, f_height, f_width]

Reshape
Upsample

Block

After each block, we upsample

the featmaps by 2x

Encoder

DecoderUpsample

Block

More resources on Transposed Conv: [link1] [link2]

https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
https://towardsdatascience.com/understand-transposed-convolutions-and-build-your-own-transposed-convolution-layer-from-scratch-4f5d97b2967
https://www.cs.toronto.edu/~lczhang/321/lec/autoencoder_notes.html


A simple autoencoder model architecture (pytorch)
class Autoencoder(nn.Module):

def __init__(self):
super(Autoencoder, self).__init__()
self.encoder = nn.Sequential(

nn.Conv2d(1, 16, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(16, 32, 3, stride=2, padding=1),
nn.ReLU(),
nn.Conv2d(32, 64, 7)

)
self.decoder = nn.Sequential(

nn.ConvTranspose2d(64, 32, 7),
nn.ReLU(),
nn.ConvTranspose2d(32, 16, 3, stride=2, padding=1, output_padding=1),
nn.ReLU(),
nn.ConvTranspose2d(16, 1, 3, stride=2, padding=1, output_padding=1),
nn.Sigmoid()

)

def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x

https://www.cs.toronto.edu/~lczhang/321/lec/autoencoder_notes.html

Fun fact: we can also do non-learnable 

upsampling (eg standard 2d interpolation like 

nearest-neighbor, linear-interp, etc) in 

pytorch, and even backprop through them! 

https://pytorch.org/docs/stable/generated/torc

h.nn.Upsample.html

https://www.cs.toronto.edu/~lczhang/321/lec/autoencoder_notes.html
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html


Image masking

• Twist on the image reconstruction 
task: rather than reconstruct the 
entire image (as in classical 
autoencoders), let's do the "fill in 
the blank" task for images!

• Aka "Masked autoencoder"

For each group: (left) image with 

blanked-out pixels (middle) model 

predictions (right) ground truth image



Masked autoencoders (MAE) (2022)

• "Masked Autoencoders Are Scalable 
Vision Learners" (Kaiming He, Xinlei Chen, Saining 

Xie, Yanghao Li, Piotr Dollar, Ross Girshick), CVPR 
2022

• Model arch: transformer encoder, 
decoder



MAE training methodology

• First phase: self-supervised training on "fill 
in the patch" task on ImageNet-1k

• Special care to deal with masking in encoder and decoder (read 
paper for details)

• Second phase: take transformer encoder 
from the first phase, and train it on image 
classification

• Notably: discard the decoder!

• Result: achieved state-of-the-art results in 
ImageNet-1k for models that have only 
seen ImageNet-1k

This qualification is important, as other papers (like ViT) 

first pretrained on large external datasets like JFT-300M 

prior to fine-tuning on ImageNet-1k



MAE takeaways

• This paper justifies the following strategy:

• Large-scale pretraining. First, take a large-capacity model (eg ViT-L), and 
pretrain it on a gigantic self-supervised task like "fill in the patch"

• Produces a "foundational" model, suitable for downstream usecases

• Pro: easy to collect this dataset!

• Con: large-scale pretraining requires a LOT of compute and $

• Task-specific fine-tuning. Take your resulting foundational model, and train it on 
your desired task (eg ImageNet-1k image classification). 

• Intuition: rather than starting your model weights from scratch (eg random init), 
we start the model weights from a strong starting point.

• Tricks: to accelerate this stage, can freeze early model layers



Effectiveness of Large-scale pretraining

• Large-scale pretraining + fine-tuning is extremely 
effective, and is widely used in both academia and 
industry

• Pinterest: "Billion-Scale Pretraining with Vision 
Transformers for Multi-Task Visual Representations" 
(2022) (Josh Beal, Hao-Yu Wu, Dong Huk Park, Andrew Zhai, Dmitry Kislyuk)

[link]

• Use ML models to automatically generate large 
"weakly labeled" image dataset

• Facebook: "Exploring the Limits of Weakly 
Supervised Pretraining" (Mahajan et al) (2018) [link]

• Hashtag prediction on Instagram images

https://arxiv.org/abs/2108.05887
https://arxiv.org/abs/1805.00932


Aside: Transfer learning

• You'll see the term "transfer learning" used a lot in this context. Transfer learning 
(in DNN's) generally means: let's train a DNN on TaskA (ex: image classification, 
or fill-in-the-blank), and then fine-tune it on TaskB.

• Transfer learning is a successful technique that predates large-scale pretraining 
(which can be seen as a version of transfer learning)



Tangent: model freezing

• When we load a pretrained model and train it on another task ("fine tune"), we 
can decide which layers of the model to learn, and which to keep fixed ("frozen")!

• Intuition: in CNN's, the early Conv layers are responsible for low-level image 
features (edges, etc). When fine-tuning for image classification we can get away 
with freezing the early Conv layers and only learning the final few Conv blocks.

• In practice: this leads to substantial training speedup with little downstream 
performance drop! (can often train for fewer epochs, and each epoch is faster + requires less GPU memory)

Bottleneck 

block (3x)

Bottleneck 

block (4x)

Bottleneck 

block (6x)
Bottleneck 

block (3x)

Class

ifier

"Dog" 

(0.94)

ResNet50 (Image 

classification arch [link]) Frozen layers (aka "don't do 

backprop through these")

Unfrozen layers (aka 

"backprop through these")

https://arxiv.org/abs/1512.03385


Tangent: model freezing (pytorch)

• Fortunately, in pytorch freezing 
layer(s) of a model is easy!

• Implementation tip: by organizing 
your torch.nn.Module's nicely (eg
composing Modules together), you 
can make it easier to freeze each 
layer, vs manually iterating over all 
model parameters and doing 
annoying bookkeeping to 
determine which parameter 
belongs to which layer, etc...

for param in model.parameters():
# Freeze, aka don't learn this parameter
param.requires_grad = False



(unused) Dataset tradeoff: scale vs semantics

• What is more important: semantics (eg classification labels) 

Dataset size

Label 

type

"Less semantics" (ex: 

fill-in-the-patch)

"High semantics" (ex: 

classification labels)
CIFAR-

10

ImageNet

-1k

JFT-

300M

(Not too scale)

Note: CIFAR-10 has 

50k training images 

[link]

Self-

supervised

https://www.cs.toronto.edu/~kriz/cifar.html


(unused) Self-supervised + Contrastive learning

• Another way: Contrastive learning

• Idea: take image X, corrupt it via X', and learn an image embedding 
representation that is robust to corruption, eg `dist(f(X), f(X'))` is small

• Ex: [link]

https://arxiv.org/abs/2011.10566


Tangent: "Train ImageNet in 1 hour"

• In "Accurate, Large Minibatch SGD: 
Training ImageNet in 1 Hour" (2018) [link] 
the authors, using a large distributed GPU 
cluster, trained a ResNet-50 model on 
ImageNet-1k "from scratch" in one hour. A 
neat accomplishment for that time!

• Hardware: 256 GPUs ("Big Basin" [link] GPU cluster internal 

to Facebook, 16GB GPU mem per card. Nvidia Tesla P100). 

• Learning: when scaling up the number of 
GPUs (aka increasing the effective 
batchsize), one must adjust the learning 
rate accordingly ("linear scaling rule").

• Rule: double the batchsize -> double the
learning rate.

https://arxiv.org/abs/1706.02677
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/


Tangent: Learning rate schedules

• So far in this class, we've used a single learning rate. 
In practice, it's better to use learning rate schedules

• Start learning rate small, then gradually ramp it up to 
a larger value (eg the first ~100 iterations)

• Intuition: starting learning rate too high often leads 
to training divergence (eg NaN losses). Thus, we 
start it low to get the model weights in a "healthy" 
region, then slowly increase the learning rate

• Over the course of training, decay the learning rate

• Intuition: during early parts of training, model 
needs to make big steps (high LR). But, near the 
end of training, model is focusing on finer-grained 
details (small LR).

https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-

classification-networks-d5f0bffb242d

https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-classification-networks-d5f0bffb242d
https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-classification-networks-d5f0bffb242d


Tangent: "Train ImageNet in 1 hour"

• A sign that GPU hardware (and DNN libraries + distributed training frameworks) 
is advancing quickly

• ...And, a hint that ImageNet-1k is starting to feel small!

• (later in Aug 2018, someone showed we can train ImageNet in 18 mins for $40 
using AWS cloud! [link])

• In 2024, I bet things are even faster + cheaper! Technology marches on...

https://www.fast.ai/posts/2018-08-10-fastai-diu-imagenet.html


(Tangent tangent) gradient quality vs num steps?

• Observation: if you keep the number training 
epochs fixed, then increasing the batchsize
leads to fewer model updates.

• Higher batchsize -> higher quality gradient 
updates, but fewer parameter updates

• Lower batchsize -> noisier gradient 
updates, but more parameter updates.

• What is best? Paper's answer: higher 
batchsize AND higher learning rate.

• ...to a point. Beyond batchsize=8k, 
classification error starts increasing.


	Slide 1: Lecture 17: Visual Transformer, Masked auto encoder
	Slide 2: Announcements
	Slide 3: Today's lecture
	Slide 4: Context: Transformers
	Slide 5: Visual Transformer (2021)
	Slide 6: Inductive bias
	Slide 7: ViT: less inductive bias
	Slide 8: ViT Implementation details: "image_patchify()"
	Slide 9: Tangent: einops
	Slide 10: ViT: Training methodology
	Slide 11: Context: ImageNet-1K
	Slide 12: ImageNet-1k, ImageNet-21k, JFT-300M
	Slide 13: Dataset trends
	Slide 14: ViT: dataset ablations
	Slide 15: Scaling up datasets: challenges
	Slide 16: Tangent: learning paradigms
	Slide 17: Unsupervised learning
	Slide 18: Self-supervised learning
	Slide 19: Why self-supervised?
	Slide 20: Self-supervised: computer vision
	Slide 21: Background: Autoencoders
	Slide 22: Background: Autoencoders
	Slide 23: Training Autoencoders
	Slide 24: A simple autoencoder model architecture
	Slide 25: Transposed Convolution
	Slide 26: A simple autoencoder model architecture (pytorch)
	Slide 27: Image masking
	Slide 28: Masked autoencoders (MAE) (2022)
	Slide 29: MAE training methodology
	Slide 30: MAE takeaways
	Slide 31: Effectiveness of Large-scale pretraining
	Slide 32: Aside: Transfer learning
	Slide 33: Tangent: model freezing
	Slide 34: Tangent: model freezing (pytorch)
	Slide 35: (unused) Dataset tradeoff: scale vs semantics
	Slide 36: (unused) Self-supervised + Contrastive learning
	Slide 37: Tangent: "Train ImageNet in 1 hour"
	Slide 38: Tangent: Learning rate schedules
	Slide 39: Tangent: "Train ImageNet in 1 hour"
	Slide 40: (Tangent tangent) gradient quality vs num steps?

