| ecture 17: Visual Transformer,
\Vlasked auto encoder

Data C182 (Fall 2024). Week 11. Tuesday Nov 5th, 2024

Speaker: Eric Kim

Announcements

- HWOS3 ("Transtormers + NLP") out! Due: Fri Nov 22nd 11:59 PM PST
- Please start early!

- Midterm regrade requests due: Fri Nov 8th, 11:59 PM PST
- Midterm stats: [lInK]

» "Course Grade Guidance": [link]

https://edstem.org/us/courses/64085/discussion/5613233
https://edstem.org/us/courses/64085/discussion/5613422

Today's lecture

« Visual Transformer

- Masked auto encoder

Context: Transformers

Context: it's 2021. CNN's are still the
dominant computer vision model arch.

"Attention |

link]) carr

S d
€0

| you need" (Vaswani et al

Jt In NIPS 2017. Its

‘transformers” model architecture Is

causing a revolution in NLP

Natural question: can we apply
transformers to the computer vision
domain? Say, image classification?

Qutput
Probabilities

| Softmax |

1

Linear
4
4 N
Add & Norm |<ﬁ
Feed
Forward
4 y

{ N
r A

[
~>| Add & Norm

Multi-Head
Feed Attention
Forward N x
~ r

| Add & Norm Je=

N x p——
p—bi Add & Norm | NMasked

Multi-Head Multi-Head
Attention Attention

.
Positiolnal Positional
Encoding Encoding
Input Output
Embedding Embedding

T T

Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

https://arxiv.org/abs/1706.03762

Visual Transformer (2021)

- Enter: the Visual Transformer (ViT)

"An Image is Worth 16x16 Words: Transformers for Image

Vision Transformer (ViT) i Transformer Encoder

Recognition at Scale” posovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai et al) [link]. —~ | |
ICLR 2021 Cléﬁ, ‘_@ : SL)P.._

- |dea: represent an image as a sequence "~ — i —
of [16x16] patches, left-to-right, top-to- R } | O—
bottom ("raster" order), s o . Q&) 8 @ 60 @5 | e
- Pass this Image sequence to a amm il Iarllldl e

transformer encoder, and train an
Image classifier on top of it! 0" tokenis basically

BERT's CLS token!

Embedded
Patches

- Results: achieved state-of-the-art results | o | |
| Net-1k CNN-b d fhod Earlier, we've discussed (in detail!) the
on ImageiNet- VS -Pased Metnoads mechanical details of how transformer

Ike ResNets encoders work. Now, let's dig into the
training methodology!

https://arxiv.org/abs/2010.11929

Inductive bias

- Definition: "Inductive bias" of a model is an
architecture-level inclinations towards
certain kinds of phenomenon/behavior.

- Example: CNN's have a strong inductive
bias towards local, translation-invariant
features, due to Conv2d being translation-

invariant.

. But: sometimes, we want our features to
be a mix of local+global

- Also: the high-level semantic CNN
features tend to also have poor spatial ' Fitters @ Layer 1 iters @ Layer 2
resolution (due to the feature-map edge detectors? ears? noses?
downsampling after each Conv block)

https://medium.com/@saba99/feature-map-35ba7e6c689e

https://medium.com/@saba99/feature-map-35ba7e6c689e

Vil: less inductive bias

- A selling point for VIT Is that it has
"less” inductive bias than CNN's

- EX: at each transformer encoder
block, each token (aka image patch)
can interact with (aka "attend to")
every other image patch in the image

- Implication: this means that Vil can,

at every transformer layer, learr

features that involve information from

any part of the image

» |n contrast: CNN's can or
features based off of spat

ly learn
ally local

information ("receptive field")

VIT-L/16
[o ¢
o 120 - ° .
g "': e :"-""'.'.'!"'
=100 o ° _:I!Ii ’ o
@
% 80 .23.!'2522
It B @
N D
°? o
c 60- :.El.sl.
-'E 40 - @ . = = Head 1
4..‘1._," : :° » Head?2
M °®
c 20 - =..' e Head 3
Q o ¢
E 0 | | | 1 |
0 5 10 15 20

/ Network depth (layer)

Interesting observation: in early transformer
layers, some heads use global information,
and some use mostly local information.
CNN's can only use local info!

nput Attention

Figure 6: Representative ex-
amples of attention from the
output token to the input
space. See Appendix D.7 for
details.

VIT Implementation details: "image_patchify()"

- (Goal: represent an image
[chans, height_img, width_img]
as a sequence with shape
[seq_len, dim].

- |dea: grid up image into patches!

- [Ip: patch_size Is typically 16x16.

Generally, passing in larger
image resolutions (eg longer seo
lens) leads to better task
performance, but is more
expensive/slower to
train/inference on (tradeoft!)

seq_len is total number of patches. EX:
for a square image: seq_len =
cell(height_img / patch_size) ** 2

Ex: for a 224x224 image and
patch_size=16: seq _len = 196.

(3) Concat all patch embeddings
Into a single [seq_len, dim] tensor.

*

Concat

iz - @)) €)6) 0)8) @) B)6 @f‘g

* Extra learnable
Linear Projection of Flattened Patches

[class] embedding
) T 1 !~‘
\ i l‘,’:?; I i & ‘
R ot W —
sl A S WO p—_

R

17 5 W,
EWE

-

(1) grid up the image Into
[patch_size x patch_size]
patches

(2) Extract an embedding for each
patch (with dimensionality dim’)

Tangent: einops

- VIT Implementations often use a
ibrary called "einops" for
image_patchify()

- elnops: "Einstein-Inspired Notation
for operations”

(for you physics fans) notation is loosely
inspired by Einstein summation [link] (ex:
einops.einsum)

- Purpose: make it easier (and
safer/more-explicit) to do certair
operations with multidimensiona
tensors (like reshaping)

Useful tutorials: [link1] [link2] [link_github]

Why use einops notation?!

Semantic information (being verbose in expectations)

y = X.view(x.shape[@], -1) =
y = rearrange(x, 'bchw->b (c hw)')

While these two lines are doing the same job in some context, the second one provides information about the input
and output. In other words, einops focuses on interface: what is the input and output, not how the output is
computed.

The next operation looks similar:

y = rearrange(x, 'time c h w -> time (c h w)") d;

but it gives the reader a hint: this is not an independent batch of images we are processing, but rather a sequence
(video).

Semantic information makes the code easier to read and maintain.

(WIll be useful for HWO04!)

https://en.wikipedia.org/wiki/Einstein_notation
https://einops.rocks/1-einops-basics/
https://einops.rocks/pytorch-examples.html
https://github.com/arogozhnikov/einops

ViT: Training methodology

- At this point: you know how to
mechanically implement the ViT model

Vision Transformer (ViT) I Transformer Encoder

)

- Image_patchify() + transformer encoder %55“1‘7‘¥W @._*
classifier &) B : I
» [t turns out: this Is only part of the story! e E“F
. The remaining "secret sauce": the training .o : ma ' @ﬁ“@ﬁ | s f
methodology + dataset. T T - é 5

Embedded
Patches

» Arecent trend in academia and industry: e e bl
improvements in dataset quality/scale BERT'S CLS tofen
often trumps architecture tweaks

- Followup: massively scaling up both
dataset size and model capacity = wins!

Context: ImageNet-1K

- ImageNet-1K [link] is the de-facto academic
Image classification dataset

- 1000 categories, 1,281,167 training images,
50,000 validation images and 100,000 test
Images

- During its prime time, 1t was the largest-scale
image classification dataset :

istory:

2000: Fei-Fel Li [link] began working on the idea for
ImageNet

2009: ImageNet poster presentation (CVPR 2009 [link])

2010: First ImageNet Large Scale Visual Recognition
Challenge

https://www.image-net.org/index.php
https://en.wikipedia.org/wiki/Fei-Fei_Li
https://web.archive.org/web/20210115185228/http:/www.image-net.org/papers/imagenet_cvpr09.pdf

ImageNet-1k, ImageNet-21k, JF1-300M

- ImageNet-1k (2010): main ImageNet release
- Human annotated
- 1.2M training images, 1000 categories

- ImageNet-21k (2010): superset of ImageNet-1k
- 14M training images, 21,841 categories

- JFT-300M (2017): image classification dataset
from Google [link]

- 300M training images, 18,000 categories

- Collected semi-automatically

Downside: proprietary closed-source dataset private just to
Google

istance POF m—

| “Tortoise Shell Sunglasses”
T— o T

“Random noise’

i
> 2 4 "
o .
T .

Figure 2. JFT-300M dataset can be noisy in terms of label confu-
sion and incorrect labels. This is because labels are generated via
a complex mixture of web signals, and not annotated or cleaned by
humans. x-axis corresponds to the quantized distances to K-Means
centroids, which are computed based on visual features.

Numb f Im

—]
- =+
) ' =]
Py w
. Tt @

'
L] =
> R
ER.—
ero ages
= 5 5 3 g =

Distance-Based Binning

https://arxiv.org/abs/1707.02968

Dataset trends

Observation: lots of work in scaling up image

classification model architectures (eg CNNs like
ResNet), but not a lot of work in scaling up

datasets

» "Let's just use ImageNet-1k since everyone

else uses It

- |dea: does anythir

g change if we dramatically

iIncrease our training dataset size?

- Followup: what if we both increase the dataset
size AND the model size”? (. foreshadowing for viT...

—
N

Dataset Size

F
-

o
Q
o

of Images (M) —»

300

‘Model Size .

Inception ResNet-v2

150 ResNet-101

VGG ResNet-50
AlexNet .

. . . # Paramaters

of Layers —»

12000 §

GPU Power
6000 /

GFlops —»

-r

2012 2013 2014 2015 2016

Figure 1. The Curious Case of Vision Datasets: While GPU com-
putation power and model sizes have continued to increase over
the last five years, size of the largest training dataset has surpris-
ingly remained constant. Why 1s that? What would have happened
if we have used our resources to increase dataset size as well? This
paper provides a sneak-peek into what could be if the dataset sizes
are increased dramatically.

https://arxiv.org/abs/1707.02968

https://arxiv.org/abs/1707.02968

VI1: dataset ablations

- (back to ViT)

- When training+testing on ImageNet-1Kk,
CNNs are better than VIT!

What?! | thought transformers were The Best Thing?

- But: when training on ImageNet-21k
(and, JFT-300M) and testing on
ImageNet-1k: VIT outperforms CNNs

- Takeaway: transformers (like ViT) are
most effective when trained on LOTS of
data

90
S -
5\. p
=
Q
Q
< T |
— 80
o,
S
e
GZJ 75 BiT ViT-L/32
O
o0 l ViT-B/32 ViT-L/16
g ViT-B/16 ViT-H/14
70- 1 I |
ImageNet ImageNet-21k JFT-300M

Pre-training dataset

Figure 3: Transfer to ImageNet. While
large VIT models perform worse than BiT
ResNets (shaded area) when pre-trained on
small datasets, they shine when pre-trained on
larger datasets. Similarly, larger ViT variants
overtake smaller ones as the dataset grows.

Scaling up datasets: challenges

- The primary challenge with scaling up
datasets like ImageNet is: getting high-
quality human labels at scale Is very
expensive, both in terms of $ and
time+effort.

- However, we've seen that transformer
model architectures (like VIT) are data
hungry, and require lots of training data
to realize its potential

- |t collecting human annotations is too
expensive, what are our alternatives?

- |dea: can we create an image dataset
without any human annotations?

https://supervisely.com/labeling-toolbox/images/

https://supervisely.com/labeling-toolbox/images/

Tangent: learning paradigms

- S0 far in this class, we've focused on supervised training: Given a dataset, each
row has an input and a grounad-truth label.

- EX: Image classification, object detection, machine translation

However, there are other training paradigms!

| am sleepy (EN) ->

n < *
.".’
i
-

ketch B

I'al sommell (FR)
Classification: Image + Detection: Image + Segmentation: Image + Translation: Text for
label boxes masks language A and

language B

Unsupervised learning

- Unsupervised: dataset has NO labels

EX: clustering algorithms (k-means)

Before K-Means

i
o ®e
®s
® o 0
-.'
. ®
& ®
e ¢) ®
o P
» o ¢

After K-Means

&

https://keytodatascience.com/k-means-clustering-algorithm/

https://keytodatascience.com/k-means-clustering-algorithm/

Self-supervised learning

- Self-supervised: create our own labels based on the input (no human labeling
required!)

- NLP "fill in the blank™ given a sentence, randomly blank out some words. Ask text
model to predict the removed words. ("cloze" task [link])

- EX: "Today, | went to the and bought some milk and eggs."

- Target: "store”

- Pro: it's really easy to scrape tons of text data from the internet, and very easy
to construct cloze examples. ("unlimited” training data for free!)

https://en.wikipedia.org/wiki/Cloze_test

Why selt-supervised?

- Motivation ("the dream"): training # Create model (randomly init'd)
: : model = create _model()
a model on ‘arge self SuperVIsed # Download pretrained model weights

datasets leads to a stronger # Ex: pretrained on self-supervised task
"S’[ar’[ing point” for downstream model_pretrained_weights = download_pretrained_weights()

app\ica’[igns (eg C‘aSSiﬂCatiOﬂ) # Load pretrained weights into our model

model.load(model pretrained weights)
Fine-tuning: train starting from pretrained weights

- Intuition: pretraining a model on train model(model, dataset)
self-supervised tasks lets the

model learn "something" about

the visual/text world. Then, fine-

tuning starts off from a "strong"

starting point (doesn't have to

start from scratch!)

Pytorch documentation on model.save(), model.load(): [link]

https://pytorch.org/tutorials/beginner/saving_loading_models.html

Self-supervised: computer vision

. Question: how do we apply the
"Fill In the blank” task from NLP

to computer vision?

- Answer: "Fill in the pixels!”

- How do we design a DNN to
predict pixel values (rather
than classification labels)?

For each group: (left) image with
blanked-out pixels (middle) model
Ex: "Today, | went to the and predictions (right) ground truth image

bought some milk and eggs."
Target: "store”

https://arxiv.org/abs/2111.06377

https://arxiv.org/abs/2111.06377

Background: Autoencoders

¢ AUtoenCOderS are a C‘aSS|C, WeH_ Input «-------------- Ideally they are identical. ------------------ > Recc'i?;tgrﬂed
studied technigue XX
- |dea: transform an input (eg image, N tenes
text) into a latent representation X ,| Encoder ' | Decoder |
. 9¢ fo &
(aka embedding), and then e ~_
reconstruct the input from the An compressed low dimensionl

representation of the input.
latents

Aka z is an embedding
representation of the input
Image

- Encoder: Given image, transform
into an embedding(s) (aka latent)

- Decoder: Given latent
representation, reconstruct
original image

Foreshadowing: this - _ _
sounds like transformer https://lillanweng.qgithub.io/posts/2018-08-12-vae/

encoder/decoder!

https://lilianweng.github.io/posts/2018-08-12-vae/

Background: Autoencoders

° QueStlon SUpPpOse wWe had a model T S el ey are ontal, e
architecture like the one on the right. What Is .
an appropriate loss function? D e

- Answer: mean-squared error between the . |9 —’. | o | %
input image and the reconstructed image T
(model output)! Aka pixel-error aka eprosenation ofthe input

"reconstruction error".

Aka z is an embedding

» Mean Squared Error (MSE) aka L2 norm epresentation ofhe ot
- Mean Absolute Error (MAE): L1 norm

loss;; = llx —x'l>

loss;y = lx — x|l

Fun fact: L1 norm tends to encourage sparsity in its output
reconstruction errors (aka more 0O values, aka more exact matching),
but L2 norm encourages overall fit. To learn more, see: [link]

https://lilianweng.qgithub.io/posts/2018-08-12-vae/

https://lilianweng.github.io/posts/2018-08-12-vae/
https://medium.com/@syoya/what-happens-in-sparse-autencoder-b9a5a69da5c6

Training Autoencoders

- [0 train an autoencoder, we can
easlily construct a training dataset: we
just need a source of images. No
labeling required!

- EX: scrape Google Images /
Pinterest / etc.

- (Glven an image, the target is the
image itself! Very nice.

Input <------oooooooooo Ideally they are identical. ------------------ >

X ~ x’

An compressed low dimensional
representation of the input.

L

‘ GG&,@'e cute dogs sleeping X !, e Q

Al Images Videos Shopping Books News Maps : More Tools

Great Pet Living - Great Pet Care Etsy - In stock @ Freepik B: BARK Post
Sleeping Dog Images: 26 of the C... Cute Puppy Sleepi... Cute sleeping dachshund puppies ... Only the Cutest Sleeping P...

© Reddit @ Pinterest Great Pet Living - Great Pet ... © stablediffusionweb.com Dogs
Cute dog sleeping : r/... 1¥ pinterest annieedv 1.t Sleeping Dog Images: 26 ... Cute Sleeping Dog | Stabl... Why Dc

A simple autoencoder model architecture

» Question: deSign a9 model architecture that given an L el ey s sl - Reconstruced
image (say, a 224x224 RGB image), implements the
autoencoder idea. x v

» Answer: many possible, but here's one: N

Ex: a resnet conv block

(repeated conv2d, relu, CNN feat maps.

batchnorm) shape=[chans, f_height, f_width] Embedding z
Conv Cconv
Block » Block Reshape» 0.1{0.3] ... |[-1.2 EnCOder
Shape:
After each block, we [chans*f_height*f width]

downsample the featmaps by 2x

Embedding z
Upsample Upsample d
0.1/0.3| ... |-1.2 Reshape = Decoder
- P Block Block
Shape:
[chans*f _height*f width] Shape: [chans, f _height, f width] After each block, we upsample
the featm apS by 2X Note: technically we don't need to do the

Our reconstru Cted OUtpUt' Reshape, but I'll do it here to be

consistent with the above figure

Transposed Convolution

- How to implement the "Upsample block™?

. TranSpOSGd COnVO‘UtiOﬂS, aka "learned upsamp\ing" (pytorch:torch.nn.CoanransposeZd [ﬂ])

Ex: a resnet conv block

(repeated conv2d, relu, CNN feat maps.

batchnorm) shape=[chans, f_height, f_width] Embedding z
Conv Conv 01l03 19 Encoder
Block - Block Reshape|®|0-1]03| . |1
Shape:
After each block, we [chans*f height*f width]

downsample the featmaps by 2x

Embedding z
Upsample Upsample
0.1/0.3| ... |-1.2 Reshape Decoder
- P Block - Block
Shape:
[chans*f_height*f width] Shape: [chans, f _height, f width] After each block, we upsample

the featmaps by 2x

More resources on Transposed Conv: [link1] [link2]

https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
https://towardsdatascience.com/understand-transposed-convolutions-and-build-your-own-transposed-convolution-layer-from-scratch-4f5d97b2967
https://www.cs.toronto.edu/~lczhang/321/lec/autoencoder_notes.html

A simple autoencoder model architecture (pytorch)

class Autoencoder(nn.Module):

def init (self) . Fun cht: we can also do Qon-learngble_
o o . . upsampling (eg standard 2d interpolation like
super(Autoencoder, self)._ init_ () nearest-neighbor, linear-interp, etc) in
self.encoder = nn.Sequential(pytorch, and even backprop through them!

. . https: torch. tabl ted/t
nn.Conv2d(1, 16, 3, stride=2, padding=1), psmwomkﬁﬂﬁg;ﬁﬁgzﬁmaaewom
nn.ReLU(),
nn.Conv2d(16, 32, 3, stride=2, padding=1),
nn.RelLU(),

nn.Conv2d(32, 64, 7)
)

self.decoder = nn.Sequential(
nn.ConvTranspose2d(64, 32, 7),

nn.RelLU(),

nn.ConvTranspose2d(32, 16, 3, stride=2, padding=1, output padding=1),
nn.RelLU(),

nn.ConvTranspose2d(16, 1, 3, stride=2, padding=1, output padding=1),
nn.Sigmoid()

)

def forward(self, x):
X = self.encoder(x)
X = self.decoder(x)
return X

https://www.cs.toronto.edu/~Iczhang/321/lec/autoencoder notes.html

https://www.cs.toronto.edu/~lczhang/321/lec/autoencoder_notes.html
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html
https://pytorch.org/docs/stable/generated/torch.nn.Upsample.html

Image masking

- Twist on the Image reconstruction
task: rather than reconstruct the
entire image (as Iin classical
autoencoders), let's do the "fill In
the blank" task for images!

- Aka "Masked autoencoder”

For each group: (left) image with
blanked-out pixels (middle) model
predictions (right) ground truth image

Masked autoencoders (MAE) (2022)

- "Masked Autoencoders Are
Vision Learners” (kaiming He, Xin
Xie, Yanghao Li, Piotr Dollar, Ross Girshic

2022

Scalable

el Chen, Saining

Q,CVPR

- Model arch: transtormer encoder,

decoder

|

HPNE™

mse -
encoder —> decoder - WHEMR LS
F.EEL s

target

|

B L Y
e |

Figure 1. Our MAE architecture. During pre-training, a large
random subset of 1mage patches (e.g., 75%) 1s masked out. The
encoder 1s applied to the small subset of visible patches. Mask
tokens are introduced affer the encoder, and the full set of en-
coded patches and mask tokens 1s processed by a small decoder
that reconstructs the original image in pixels. After pre-training,
the decoder 1s discarded and the encoder 1s applied to uncorrupted
images (full sets of patches) for recognition tasks.

MAE training methodology

classification

- First phase: self-supervised training on "fill -
In the patch” task on ImageNet-1k = =

C

Special care to deal with masking in encoder and decoder (read T el | =

paper for details) SHENS . =
Al | e encoder —» decoder .

aemns M :

- Second phase: take transformer encoder e = -
from the first phase, and train it on image “ -

C

-

o Not ab‘y d |SC a rd the deCOder' Figure 1. Our MAE architecture. During pre-training, a large

random subset of 1image patches (e.g., 75%) 1s masked out. The
encoder 1s applied to the small subset of visible patches. Mask

o Result aCheved State_Of_the_a r't reSUH:S |n tokens are introduced after the encoder, and the full set of en-
A coded patches and mask tokens 1s processed by a small decoder
‘mage N et‘ k fOI’ mo th at have Only that reconstructs the original image in pixels. After pre-training,
_ the decoder 1s discarded and the encoder 1s applied to uncorrupted
Seen ImageN et 1 k images (full sets of patches) for recognition tasks.

This qualification is important, as other papers (like VIT)
first pretrained on large external datasets like JFT-300M
prior to fine-tuning on ImageNet-1k

MAE takeaways

- This paper justifies the following strategy:

- Large-scale pretraining. First, take a large-capacity model (eg ViT-L), and
pretrain it on a gigantic self-supervised task like "ill in the patch’

- Produces a "foundational® model, suitable for downstream usecases
- Pro: easy to collect this dataset!
. Con: large-scale pretraining requires a LOT of compute and $

- Task-specific fine-tuning. Take your resulting foundational model, and train it on
your desired task (eg ImageNet-1k image classification).

- Intuition: rather than starting your model weights from scratch (eg random init),
we start the model weights from a strong starting point.

- Tricks: to accelerate this stage, can freeze early model layers

Effectiveness of Large-scale pretraining

- Large-scale pretraining + fine-tuning is extremely
effective, and is widely used in both academia and
iIndustry

- Pinterest: "Billion-Scale Pretraining with Vision
Transformers for Multi-Task Visual Representations’
(2022) (Josh Beal, Hao-Yu Wu, Dong Huk Park, Andrew Zhai, Dmitry Kislyuk)

jiialq

- Use ML models to automatically generate large
‘weakly labeled” iImage dataset

- Facebook: "Exploring the Limits of Weakly N | |
. . .] . 1gu.re 8: Example of retrieval results usmg the control (pro-
S U pe VI Sed P retra ININ g (M ad h aJ adn et ad ‘) (2 O 1 8) [l IN k] duction) model, the ResNeXt-101 Annotations-1.3B model,

and the ViT-B/16 Annotations-1.3B model. The ViT model
generally matches more similar product results.

- Hashtag prediction on Instagram images

https://arxiv.org/abs/2108.05887
https://arxiv.org/abs/1805.00932

Aside: Transfer learning

« YOUl

(in DNN's) generally means: let's train a DNN on TaskA (ex: image classification,
or fill-

see the term "transter learning" used a lot in this context. Transfer learning

INn-the-blank), and then fine-tune it on TaskB.

- Transfer learning is a successful technique that predates large-scale pretraining
(which can be seen as a version of transfer learning)

Tangent: model freezing

- When we |load a pretrained model and train it on another task (“fine tune"), we
can decide which layers of the model to learn, and which to keep fixed (“frozen")!

- Intuition: in CNN's, the early Conv layers are responsible for low-level image
features (edges, etc). When fine-tuning for image classification we can get away
with freezing the early Conv layers and only learning the final few Conv blocks.

- |In practice: this leads to substantial training speedup with little downstream
performance drop! (can often train for fewer epochs, and each epoch is faster + requires less GPU memory)

Bottleneck » Bottleneck » Bottleneck Bottleneck » Class
» block (3x) block (4x) block (6x) » block (3x) ifier

ResNet50 (Image ‘ Y /

classification arch [link]) Frozen layers (aka "don't do Unfrozen layers (aka
backprop through these") "backprop through these")

https://arxiv.org/abs/1512.03385

Tangent: model freezing (pytorch)

’ Fortunate\y, Ir pytorch freezing for param in model.parameters():

\ayer(s) of a model is easy! # Freeze, aka don't learn this parameter
param.requires _grad = False

- Implementation tip: by organizing
your torch.nn.Module's nicely (eg
composing Modules together), you
can make it easier to freeze each
layer, vs manually iterating over all
model parameters and doing
annoying bookkeeping to
determine which parameter
belongs to which layer, etc...

Note: CIFAR-10 has
50k training images

(unused) Dataset tradeoft: scale vs semantics

- What is more important: semantics (eg classification labels)

ImageNet
-1k

"High semantics"” (ex:
classification labels)

Label
type

"Less semantics" (ex:
fill-in-the-patch)

Self-
supervised

Dataset size

(Not too scale)

https://www.cs.toronto.edu/~kriz/cifar.html

(unused) Self-supervised + Contrastive learning

- Another way: Contrastive learning

- |dea: take Image X, corrupt it via X', and learn an image embedding
representation that is robust to corruption, eg dist(f(X), f(X')) is small

» £t [lInk]

https://arxiv.org/abs/2011.10566

Tangent: "lrain ImageNet in 1 hour’

- |In "Accurate, Large Minibatch SGD:
Training ImageNet in 1 Hour" (2018) [link]
the authors, using a large distributed GPU
cluster, trained a ResNet-50 model on
lmageNet-1k "from scratch" in one hour. A
neat accomplishment for that time!

® Hardware: 256 GPUS ("Big Basin" [link] GPU cluster internal

to Facebook, 16GB GPU mem per card. Nvidia Tesla P100).

 Learning: when scaling up t

he n

GPUs (aka increasing the e
batchsize), one must adjust

the

Tectl

umber of
ve

earning

rate accordingly ("linear scaling rule").

- Rule: double the batchsize -> double the

learning rate.

w W o
o &) o
| I

N
&)

—

@- e — o . o»—

ImageNet top-1 validation error

N
o

64 128 256 512 1k 2k 4k 8k 16k 32k 64Kk
mini-batch size

Figure 1. ImageNet top-1 validation error vs. minibatch size.

Error range of plus/minus two standard deviations 1s shown. We

present a simple and general technique for scaling distributed syn-

chronous SGD to minibatches of up to 8k 1images while maintain-

ing the top-1 error of small minibatch training. For all minibatch

https://arxiv.org/abs/1706.02677
https://engineering.fb.com/2017/03/08/data-center-engineering/introducing-big-basin-our-next-generation-ai-hardware/

Tangent: Learning rate schedules

So far in this class, we've used a single learning rate.
In practice, it's better to use learning rate schedules

Start learning rate small, then gradually ramp it up to
a larger value (eg the first ~100 iterations)

Intuition: starting learning rate too high often leads
to training divergence (eg NaN losses). Thus, we
start it low to get the model weights in a "healthy”
region, then slowly increase the learning rate

Over the course of training, decay the learning rate

Intuition: during early parts of training, model
needs to make big steps (high LR). But, near the
end of training, model is focusing on finer-grained
details (small LR).

—Cosine Decay
- Step Decay

————————

https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-
classification-networks-d5fObffb242d

https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-classification-networks-d5f0bffb242d
https://pub.towardsai.net/are-you-sure-that-you-can-implement-image-classification-networks-d5f0bffb242d

Tangent: "lrain ImageNet in 1 hour’

- A sign that GPU hardware (and DNN libraries + distributed training frameworks)
'S advancing quickly

- ...And, a hint that ImageNet-1k is starting to feel small!

. (later in Aug 2018, someone showed we can train ImageNet in 18 mins for $40
using AWS cloud! [link])

- In 2024, | bet things are even faster + cheaper! Technology marches on...

https://www.fast.ai/posts/2018-08-10-fastai-diu-imagenet.html

(Tangent tangent) gradient quality vs num steps”?

- QObservation: if you keep the number training
epochs fixed, then increasing the batchsize
leads to fewer model updates.

TN
o

w
(&)
|

- Higher batchsize -> higher quality gradient
updates, but fewer parameter updates

}

w
o

ImageNet top-1 validation error

+ Lower batchsize -> noisier gradient e
updates, but more parameter updates. s e e e a s e o on
mini-batch size
- What is best? Paper's answer: higher Ervr e of plus/mines o standard deviations 1 shown, W
batchsize AND higher learning rate. Chronoss SGID (0 mintches afup o 8k images wihie muntoi

ing the top-1 error of small minibatch training. For all minibatch

- ...to a point. Beyond batchsize=8Kk,
classification error starts increasing.

	Slide 1: Lecture 17: Visual Transformer, Masked auto encoder
	Slide 2: Announcements
	Slide 3: Today's lecture
	Slide 4: Context: Transformers
	Slide 5: Visual Transformer (2021)
	Slide 6: Inductive bias
	Slide 7: ViT: less inductive bias
	Slide 8: ViT Implementation details: "image_patchify()"
	Slide 9: Tangent: einops
	Slide 10: ViT: Training methodology
	Slide 11: Context: ImageNet-1K
	Slide 12: ImageNet-1k, ImageNet-21k, JFT-300M
	Slide 13: Dataset trends
	Slide 14: ViT: dataset ablations
	Slide 15: Scaling up datasets: challenges
	Slide 16: Tangent: learning paradigms
	Slide 17: Unsupervised learning
	Slide 18: Self-supervised learning
	Slide 19: Why self-supervised?
	Slide 20: Self-supervised: computer vision
	Slide 21: Background: Autoencoders
	Slide 22: Background: Autoencoders
	Slide 23: Training Autoencoders
	Slide 24: A simple autoencoder model architecture
	Slide 25: Transposed Convolution
	Slide 26: A simple autoencoder model architecture (pytorch)
	Slide 27: Image masking
	Slide 28: Masked autoencoders (MAE) (2022)
	Slide 29: MAE training methodology
	Slide 30: MAE takeaways
	Slide 31: Effectiveness of Large-scale pretraining
	Slide 32: Aside: Transfer learning
	Slide 33: Tangent: model freezing
	Slide 34: Tangent: model freezing (pytorch)
	Slide 35: (unused) Dataset tradeoff: scale vs semantics
	Slide 36: (unused) Self-supervised + Contrastive learning
	Slide 37: Tangent: "Train ImageNet in 1 hour"
	Slide 38: Tangent: Learning rate schedules
	Slide 39: Tangent: "Train ImageNet in 1 hour"
	Slide 40: (Tangent tangent) gradient quality vs num steps?

