Natural Language Processing (NLP) Pretraining:

DATA/COMPSCI 182 Deep Learning Lecture 16 10/31/2024

Why some NLP, in this Deep Learning course?

- Natural text
- Self-supervised !
- •Let us take on a real problem !
 - Talk about tokens, sequences, embeddings, decoding, encoding, downstream tasks all in this real setting
- •And natural language (processing), is THE problem
 - Large *Language* ;) Models
 - Everything else image, video, audio, biology ... (models) inspired by language models

NLP Pretraining

- Embeddings
- Word (token) Embeddings
 - We will learn what they are
- Create them, word2vec
 - By building (in PyTorch) DNNs, and training them over some meaningful data
- Increasing sophistication
 - The "iconic" transformers: ELMo, GPT, and BERT
 - The key aspects of each, and the key differences accross each

- NLP, Language Models are entire courses in themselves !
- The material is drawn from Ch 15 (NLP: Pretraining) from Dive into Deep Learning
 - Select subset

Word Embeddings (word2vec) [d2lai 15.1.1-3]

- Today we focus on upstream representation training

• Pretrained text representations \longrightarrow DNNs \longrightarrow different downstream NLP applications

• Encodings: one-hot is not a very good idea

- word2vec: combines skip-gram and CBOW (continuous-bag-ofwords)
- Probability of generating context words, given center word Independence assumption !
- Likelihood

$$P(w_o \mid w_c) = \frac{\exp(\mathbf{u}_o^{\mathsf{T}} \mathbf{v}_c)}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_c)}$$

$$\prod_{t=1}^{T} \prod_{-m \leq j \leq m, j \neq 0} P(w^{(t+j)} \mid w^{(t)})$$

word2vec: Skip-gram Model

- Any word with index i in the dictionary
 - v_i, and u_i are d-dimensional vectors, center and context respectively
- Conditional probability of generating a context word wo given the center word w_c
 - Softmax on vector dot products
- Likelihood function of skip-gram model
 - Context window: m, Sequence length: T

P("the", "man", "his", "son" | "loves").

 $P(\text{"the"} \mid \text{"loves"}) \cdot P(\text{"man"} \mid \text{"loves"}) \cdot P(\text{"his"} \mid \text{"loves"}) \cdot P(\text{"son"} \mid \text{"loves"})$

 $P(w_o \mid w_c) = \frac{\exp(\mathbf{u}_o^{\mathsf{T}} \mathbf{v}_c)}{\sum_{c \in \mathcal{U}} \exp(\mathbf{u}^{\mathsf{T}} \mathbf{v}_c)}$

$$\prod_{j=1}^{n} \prod_{-m \le j \le m, j \ne 0} P(w^{(t+j)} \mid w^{(t)}),$$

skip-gram model: training

- Skip-gram model parameters: the center and context word vector for each word in the vocabulary
- Minimizing this loss function
- Stochastic Gradient Descent
- Optimization ?
 - Sample shorter sequences
- Continuous-Bag-Of-Words: CBOW
 - Assumes *center* word is generated, given context words

$$\prod_{t=1}^{T} \prod_{-m \leq j \leq m, j \neq 0} P(w^{(t+j)} \mid w^{(t)}),$$

$$-\sum_{t=1}^{T} \sum_{-m \le j \le m, \ j \ne 0} \log P(w^{(t+j)} \mid w^{(t)})$$

P("loves" | "the", "man", "his", "son") loves man son

Approximate Training [d2lai 15.2.2]

- Negative Sampling
 - Random negative words
- Hierarchical Softmax
 - Binary tree where each leaf is a word
 - Path: product of probabilities to leaf
 - Efficient !
 - Parameters: weight vectors associated with each node in the binary tree
- Skip [d2lai 15.2.2]
 - Set of words for training
 - High frequency words are not very useful
 - Filter out
- Subsampling

Pretraining word2vec [d2lai 15.4]

Notebook: Pretraining word2vec.ipynb

•Byte Pair Encoding

Subword Embedding

banana bandana banana bandana b ana na b ana d ana bana na bana dana bana na bana dana

Emeddings: Further evolution

from Context-Independent to Context-Sensitive

- ELMo (Embeddings from Language Models)
 - Deep Contextualized Word Representations
 - arXiv:1802.05365v2 (2018)
- $f(x) \longrightarrow f(x, C(x))$
- ELMo: combines all the *intermediate layer representations* from pretrained bidirectional LSTM as the output representation
- BUT significant additional work for each (NLP) application

Deep contextualized word representations

Matthew E. Peters[†], Mark Neumann[†], Mohit Iyyer[†], Matt Gardner[†], {matthewp, markn, mohiti, mattg}@allenai.org

Christopher Clark*, Kenton Lee*, Luke Zettlemoyer^{†*}

{csquared,kentonl,lsz}@cs.washington.edu

[†]Allen Institute for Artificial Intelligence *Paul G. Allen School of Computer Science & Engineering, University of Washington

Abstract

We introduce a new type of *deep contextual-ized* word representation that models both (1) complex characteristics of word use (e.g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). Our word vectors are learned func-

guage model (LM) objective on a large text corpus. For this reason, we call them ELMo (Embeddings from Language Models) representations. Unlike previous approaches for learning contextualized word vectors (Peters et al., 2017; McCann et al., 2017), ELMo representations are deep, in the sense that they are a function of all of the in-

from Task-Specific to Task-Agnostic

• GPT

- <u>https://openai.com/index/language-unsupervised/</u> (June 2018)
- Additional linear layer: for tasks

Improving Language Understanding by Generative Pre-Training

Alec Radford OpenAI alec@openai.com

Karthik Narasimhan OpenAI karthikn@openai.com

Tim Salimans OpenAI tim@openai.com

Ilya Sutskever OpenAI ilyasu@openai.com

Best of both: **BERT**

- BERT: Bidirectional Encoder Representations from Transformers (May 2019)
- arXiv:1810.04805
 - Pretrained transformer encoder •
 - Encodes context bidirectionally •
 - NLP tasks

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Ming-Wei Chang Kenton Lee Kristina Toutanova Jacob Devlin Google AI Language {jacobdevlin,mingweichang,kentonl,kristout}@google.com

Minimal architecture change for wide variety of

Comparison: ELMo, GPT, BERT