
Natural Language
Processing (NLP)
Pretraining:

DATA/COMPSCI 182 Deep Learning

Lecture 16 10/31/2024

Why some NLP, in this Deep Learning course ?
• Natural text

• Self-supervised !

•Let us take on a real problem !

• Talk about tokens, sequences, embeddings, decoding, encoding, downstream tasks ….. all in this real setting

•And natural language (processing), is THE problem

• Large Language ;) Models

• Everything else - image, video, audio, biology … (models) inspired by language models

NLP Pretraining
• Embeddings

• Word (token) Embeddings

• We will learn what they are

• Create them, word2vec

• By building (in PyTorch) DNNs, and training them over some meaningful data

• Increasing sophistication

• The “iconic” transformers: ELMo, GPT, and BERT

• The key aspects of each, and the key differences accross each

I will add ….
• NLP, Language Models are entire courses in themselves !

• The material is drawn from Ch 15 (NLP: Pretraining) from Dive into Deep Learning

• Select subset

Word Embeddings (word2vec) [d2lai 15.1.1-3]

• Pretrained text representations —> DNNs —> different downstream NLP applications

• Today we focus on upstream representation training

word2vec: Skip-gram Model

• word2vec: combines skip-gram and CBOW (continuous-bag-of-
words)

• Probability of generating context words, given center word

•Independence assumption !

• Likelihood

• Encodings: one-hot is
not a very good idea

word2vec: Skip-gram Model

• Any word with index i in the dictionary

• vi, and ui are d-dimensional vectors, center and context respectively

• Conditional probability of generating a context word wo given the center
word wc

• Softmax on vector dot products

• Likelihood function of skip-gram model

• Context window: m, Sequence length: T

skip-gram model: training

• Skip-gram model parameters: the center and context word vector for
each word in the vocabulary

• Minimizing this loss function

• Stochastic Gradient Descent

• Optimization ?

• Sample shorter sequences

• Continuous-Bag-Of-Words: CBOW

• Assumes center word is generated, given context words

Approximate Training [d2lai 15.2.2]

•Negative Sampling

• Random negative words

• Hierarchical Softmax

• Binary tree where each leaf is a word

• Path: product of probabilities to leaf

• Efficient !

• Parameters: weight vectors associated with

each node in the binary tree

• Skip [d2lai 15.2.2]

• Set of words for training

• High frequency words are not very useful

• Filter out

• Subsampling

Pretraining word2vec [d2lai 15.4]

Notebook: Pretraining word2vec.ipynb

Subword Embedding
•Byte Pair Encoding

b a n a n a b a n d a n a

b an a n a b an d an a

b ana na b ana d ana

bana na bana d ana

bana na bana dana

Emeddings: Further evolution

from Context-Independent to Context-Sensitive

• ELMo (Embeddings from Language
Models)

• Deep Contextualized Word Representations

• arXiv:1802.05365v2 (2018)

• f(x) —> f(x,c(x))

• ELMo: combines all the intermediate layer
representations from pretrained bidirectional
LSTM as the output representation

• BUT ….. significant additional work for each
(NLP) application

from Task-Specific to Task-Agnostic

• GPT

• https://openai.com/index/language-unsupervised/ (June 2018)

• Addtional linear layer: for tasks

https://openai.com/index/language-unsupervised/

Best of both: BERT
• BERT:Bidirectional Encoder Representations
from Transformers (May 2019)

• arXiv:1810.04805

• Pretrained transformer encoder

• Encodes context bidirectionally

• Minimal architecture change for wide variety of

NLP tasks

Comparison: ELMo, GPT, BERT

