
Natural Language 
Processing (NLP) 
Pretraining:

DATA/COMPSCI 182 Deep Learning 
Lecture 16 10/31/2024



Why some NLP, in this Deep Learning course ?
• Natural text 
• Self-supervised ! 
•Let us take on a real problem ! 

• Talk about tokens, sequences, embeddings, decoding, encoding, downstream tasks ….. all in this real setting 

•And natural language (processing), is THE problem 
• Large Language ;) Models  
• Everything else - image, video, audio, biology … (models) inspired by language models 



NLP Pretraining
• Embeddings 
• Word (token) Embeddings 

• We will learn what they are 

• Create them, word2vec 
• By building (in PyTorch) DNNs, and training them over some meaningful data 

• Increasing sophistication 
• The “iconic” transformers: ELMo, GPT, and BERT 

• The key aspects of each, and the key differences accross each



I will add ….
• NLP, Language Models are entire courses in themselves ! 
• The material is drawn from Ch 15 (NLP: Pretraining)  from Dive into Deep Learning 

• Select subset



Word Embeddings (word2vec) [d2lai 15.1.1-3]

• Pretrained text representations  —> DNNs —>  different downstream NLP applications 

• Today we focus on upstream representation training



word2vec: Skip-gram Model

• word2vec: combines skip-gram and CBOW (continuous-bag-of-
words)   

• Probability of generating context words, given center word 
•Independence assumption ! 
• Likelihood

• Encodings: one-hot is 
not a very good idea 



word2vec: Skip-gram Model

• Any word with index i in the dictionary  
• vi, and ui are d-dimensional vectors, center and context respectively   

• Conditional probability of generating a context word wo given the center 
word wc 

• Softmax on vector dot products  

• Likelihood function of skip-gram model 
• Context window: m, Sequence length: T



skip-gram model: training

• Skip-gram model parameters: the center and context word vector for 
each word in the vocabulary  

• Minimizing this loss function 
• Stochastic Gradient Descent  
• Optimization ? 

• Sample shorter sequences  

• Continuous-Bag-Of-Words: CBOW 
• Assumes center word is generated, given context words



Approximate Training [d2lai 15.2.2]

•Negative Sampling 
• Random negative words 

• Hierarchical Softmax 
• Binary tree where each leaf is a word 
• Path: product of probabilities to leaf 
• Efficient ! 
• Parameters: weight vectors associated with 

each node in the binary tree 

• Skip [d2lai 15.2.2] 
• Set of words for training 
• High frequency words are not very useful  

• Filter out  
• Subsampling



Pretraining word2vec [d2lai 15.4]

Notebook: Pretraining word2vec.ipynb 



Subword Embedding
•Byte Pair Encoding 

b a n a n a   b a n d a n a 
b an a n a   b an d an a 
b ana na   b ana d ana 
bana na   bana d ana 
bana na   bana dana 



Emeddings: Further evolution



from Context-Independent to Context-Sensitive

• ELMo (Embeddings from Language 
Models) 

• Deep Contextualized Word Representations 
• arXiv:1802.05365v2  (2018) 

• f(x) —> f(x,c(x))  
•  ELMo: combines all the intermediate layer 
representations from pretrained bidirectional 
LSTM as the output representation 

• BUT ….. significant additional work for each 
(NLP) application 



from Task-Specific to Task-Agnostic

• GPT 
• https://openai.com/index/language-unsupervised/ (June 2018)  

•  Addtional linear layer: for tasks 

https://openai.com/index/language-unsupervised/


Best of both: BERT
• BERT:Bidirectional Encoder Representations 
from Transformers (May 2019) 

• arXiv:1810.04805 
• Pretrained transformer encoder 
• Encodes context bidirectionally 
• Minimal architecture change for wide variety of 

NLP tasks  



Comparison: ELMo, GPT, BERT


