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Why some NLP, in this Deep Learning course ?
• Natural text

• Self-supervised !

•Let us take on a real problem !


• Talk about tokens, sequences, embeddings, decoding, encoding, downstream tasks ….. all in this real setting


•And natural language (processing), is THE problem

• Large Language ;) Models 

• Everything else - image, video, audio, biology … (models) inspired by language models 



NLP Pretraining
• Embeddings

• Word (token) Embeddings


• We will learn what they are


• Create them, word2vec

• By building (in PyTorch) DNNs, and training them over some meaningful data


• Increasing sophistication

• The “iconic” transformers: ELMo, GPT, and BERT


• The key aspects of each, and the key differences accross each



I will add ….
• NLP, Language Models are entire courses in themselves !

• The material is drawn from Ch 15 (NLP: Pretraining)  from Dive into Deep Learning


• Select subset



Word Embeddings (word2vec) [d2lai 15.1.1-3]

• Pretrained text representations  —> DNNs —>  different downstream NLP applications


• Today we focus on upstream representation training



word2vec: Skip-gram Model

• word2vec: combines skip-gram and CBOW (continuous-bag-of-
words)  


• Probability of generating context words, given center word

•Independence assumption !

• Likelihood

• Encodings: one-hot is 
not a very good idea 



word2vec: Skip-gram Model

• Any word with index i in the dictionary 

• vi, and ui are d-dimensional vectors, center and context respectively  


• Conditional probability of generating a context word wo given the center 
word wc


• Softmax on vector dot products 


• Likelihood function of skip-gram model

• Context window: m, Sequence length: T



skip-gram model: training

• Skip-gram model parameters: the center and context word vector for 
each word in the vocabulary 


• Minimizing this loss function

• Stochastic Gradient Descent 

• Optimization ?


• Sample shorter sequences 


• Continuous-Bag-Of-Words: CBOW

• Assumes center word is generated, given context words



Approximate Training [d2lai 15.2.2]

•Negative Sampling

• Random negative words


• Hierarchical Softmax

• Binary tree where each leaf is a word

• Path: product of probabilities to leaf

• Efficient !

• Parameters: weight vectors associated with 

each node in the binary tree


• Skip [d2lai 15.2.2]

• Set of words for training

• High frequency words are not very useful 


• Filter out 

• Subsampling



Pretraining word2vec [d2lai 15.4]

Notebook: Pretraining word2vec.ipynb 



Subword Embedding
•Byte Pair Encoding 

b a n a n a   b a n d a n a

b an a n a   b an d an a

b ana na   b ana d ana

bana na   bana d ana

bana na   bana dana




Emeddings: Further evolution



from Context-Independent to Context-Sensitive

• ELMo (Embeddings from Language 
Models)


• Deep Contextualized Word Representations

• arXiv:1802.05365v2  (2018)


• f(x) —> f(x,c(x)) 

•  ELMo: combines all the intermediate layer 
representations from pretrained bidirectional 
LSTM as the output representation


• BUT ….. significant additional work for each 
(NLP) application 



from Task-Specific to Task-Agnostic

• GPT

• https://openai.com/index/language-unsupervised/ (June 2018) 


•  Addtional linear layer: for tasks 

https://openai.com/index/language-unsupervised/


Best of both: BERT
• BERT:Bidirectional Encoder Representations 
from Transformers (May 2019)


• arXiv:1810.04805

• Pretrained transformer encoder

• Encodes context bidirectionally

• Minimal architecture change for wide variety of 

NLP tasks  



Comparison: ELMo, GPT, BERT


