| ecture 14: Transformers (Part 4)

Data C182 (Fall 2024). Week 08. Tuesday Oct 15th, 2024

Speaker: Eric Kim

Announcements

« HWOZ2 ("RNNS") out! Due: Sun Oct 27th 11:59PM PST

- Please start early!

Announcements

 Midterm is coming up! [link]
» Tuesday, October 22th 2024, 6:30 PM - 8 PM.
. Location: ~50% in 10 Evans, ~50% in Physics 1

- We'll send exam room assignments to students shortly

- |t you're unable to make this time, please contact us ASAP (make a private Ed
pOSt)

- Midterm will cover everything from:
- Lectures, discussions, HW0O1+HWO0Z2

- In-person, paper + pencil exam.

- DSP: if you need exam accommodations, please contact us ASAP (private post
on Ed)

3

https://edstem.org/us/courses/64085/discussion/5495397

DSP: Midterms

- DSP students with exam accommodations: you should have received an emalill
regarding scheduling your midterm exam. Please fill out the "V2" google form
ASAP so that we can schedule your midterm

Today's lecture

- (Correction on Lecture 12: MHA)
- Transformers (Part 3!)
- Encoders: classification techniques
» Decoders
- Cross attention
- Masked self-attention ("causal self attention”)
+ Sequence-to-sequence tasks

- EX: Machine translation, text generation

for fun

pytorch / torch / nn / functional.py

- Deep in the pytorch implementation for [Code | Blame 6300 lines (5389 loc) - 231 k8 - @
‘torch.nn.functional.multi_head_attention_forward() | " _ |
there is this funny comment [link]: T
6231 1f not training:
(open-source can be fun!) £937 dropout p = 0.0
6233
6234 =
;"' 6235 # (deep breath) calculate attention and out projection
6236 =
6237
6238 1T need welghts:
6239 B, Nt, E = g.shape
6240 q scaled = q * math.sgrt(1.e / float(E))
6241
6242 assert not (
6243 1s causal and attn mask is None
6244), "FIXME: 1s causal not implemented for need weights”
6245
6246 if attn mask 1s not None:
6247 attn output weights = torch.baddbmm(
6248 attn mask, q scaled, k.transpose(-2, -1)

6249)

https://github.com/pytorch/pytorch/blob/41977a05314bbf537e1c5d6cf5916a368d1907d9/torch/nn/functional.py#L6235

Neat animation from: https://towardsdatascience.com/illustrated-

(Correction from Lecture 12) (slide pdfs on website is updated) quide-to-transformers-step-by-step-explanation-f74876522bc0

MHA (v1.5): multiple heads + split

In practice: to reduce computation costs, rather than have

each self-attention module operate on the full embedding - TP
‘d’, we divide up the embeddings into h chunks.

.--"'_"'H d]\H\‘“‘“—'ﬂ-—, ,,-"'"_"Hr /’TR h""'—'--n.h

Example: for d=16 and h=2 heads

HeadO: work on first 8 embed dimé: X[:, 18] BHQE EEHQ HHQE Hﬁﬁﬁ HHEH ﬁﬁﬁﬁ

Headl: work on last 8 embed dims: X|:, 8:] query value query key value

Xy, shape=[seq_len, d] d
Qh — XW,(I(I) Qh: Kh'Vh dh o floor(ﬁ) Splitting Q, K, V, N times before applying self-attention

Shape=[seq_len, d;]

K, =XW,;") ‘effective” embed f Split (d -> d,,)
! j W, Wik, vy dimensionality for
Hj = AttelltiOIl(Qh,, K. Vh)
query key value
Y(X) — Cloncat [H HH] W(o) Implication: with this embedding "splitting"”, a MHA with h heads
\ - Lysee L~ (operating on d//h dims) is roughly the same computation cost as a

Y Learned linear MHA with 1 head but operating on the full embedding dimensionality.

h = | h* L
> ap:[s[ggqgﬁna]] transtorm. Rev02(2024-10-15) This slide originally had a mistake: it stated that we split X
- Shape=[d, d] into “h" chunks for MHA. This is not true, we split Q,K,V into “h* chunks:
Qn Kn, Vi

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Encoder: Classification”

Recall: a Transformer encoder performs the following:

* Input: sequence X (shape=[batchsize, seq len,
dim_embed])

» Output: representation Y (shape=[batchsize, seq len,
dim_embed])

 Where Y Is a learned transformation of X (eg via multi-
head self attention, FFNSs, etc)

* Notably, output token Y]|:, ind_token, :] corresponds to
iInput token X|:, ind_token, :]

* Question: how to perform classification on the output Y?

TransformerEncoder
pytorch code: [link]

Task

head(s) <’

(eg: classification,
detection, regression,
etc)

\

Classification
head

L

Output Token
New learned — Embeds

representation

Encoder
blocks

—

N x

Add & Norm
Multi-Head
Attention

1

PDSI’[IDI"I&I o
Encc}dmg
Input
Embedding
INputs

https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L309

Encoder Classification VO: Nalve classitier

Shape=[bs, num_classes]

- Proposal: flatten the Y from [batchsize, seq_len,

. .) . I . Softmax
dim_hidden] to [batchsize, seq_len*dim_hidden], Shape—Tbs. num classes| 2 s
and add a Linear(in=seq_len*dim_embed, Crear | numdesses
out=num_classes) layer after the Encoder Shape=[bs, seq_len*d] %

Qutput_ Flatten
. | Shape=[bs, seq_len, d] t
- Question: what are the pros/cons of this? Output Token
5ro: Simol Embeds
ro: Simple] s
CO n f AddFi_:[JjDrm ‘w
Hard codes the sequence length into the classifier, which =
means you can't easily modify the sequence length past cncoder 4 R
whatever length you used during training | “Aeton
\ —r
Can be computationally expensive: for long sequence ceoang QO

— Input
Embedding

lengths and large number of target classes, the Linear layer
can become too large I

Inputs

Classification approach 1: "CLS" token

"Sentiment: Very

- Key idea: prepend a "CLS" token to the positive (5/5)"
start of every sequence. Then, train a *
C\aSSIerr on tOp Of th|S CI_S tOkeﬂ Classifier "CLS" token: stores global info
embedding Rl
Intuition: CLS token stores the "global) -

INfo about the sentence
BERT

E, E, E,

e

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColA

Classification approach 2: Token aggregation

- Key Idea: aggregate the seq_len output
tokens into a single output embedding,

then add your ¢

assifier on top of this

+ EX: average, max

Question: what Is the shape of
the Linear layer's W weight?

Answer: [num_classes, d]

After aggregation: [bs, d]

Before aggregation: [bs, seq_len, d]

"Sentiment: Very
Positive (5/5)"

s »
Linear

*

Aggregation (ex: avg, max)

Y

Single Sentence

Decoder

- Useful for tasks involving token generation .
(_Softmax__]

« EX: machine translation, text -
summarization, question-and-answer =
bots, etc. - —= ===

< — Decoder

o Fonn:fard J 7 7 7 N x
ey concepts Encoder | o || [eme-

» Cross-attention T | R

+ Masked self attention s O SO

~—— Embedding Embe:ldding I

- Auto-regressive inference

(shifted right)

Figure 1: The Transformer - model architecture.

Cross attention

- Recall: in the Encoder's multi-head attention (MHA), we had
only one input sequence, aka "Self attention”

» "Cross attention": MHA but with two different input segs.

- TIp: consider English->French translation, where we have a target
sequence X, (French) and an input sequence Xg,.. (English)

+ Intuition: given X;,, and Xg,.., do the following

- Cross-attention weights: determine how important tokenA
from X, IS to tokenB from X,

- Attention-weighted transform: given cross-attention weights,
transform X,

—
e
——/
)
G
—
)
—/

tht XSTC

Cross-attention

Cross attention: seq lengths

- Note that, In this
formulation, the Xegt

Embedding

size

d

. E—

sequence \engths are t

number

allowed to be different of tokens | | X1

for tht and XSTC! =

- Fortunately, all shapes Asre d,
adjust in the natural way: umber

of tokens /! -9

\J 4

=

*new”

Input: X, (shape=[bs, n, d]), X, (shape=[bs, m, d])
Output: Z (shape=[bs, n, d])

Important: X;,, determines the
output sequence length!

~V

dv
P
n A
V \ 4
dv \ 4
P
A
Z
n
\ 4

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

Cross attention: equations ("single head")

d
_ q
Q=X tgth Embedding d, P m—
— size <
K = Xsrch X
tgt _d _I W »| Q S
V — XSTCWv A«——» q n new
v
number
. QKT of tokens - X
A = attention(Q,K,V) = Softmax() | d, -
vd d,=d, — 3 >
4+—>
Out — AV XSTC d _I Wk > K >
+«—> m n
A /V v
number m X, *naw* dv
_ o of tokens | '
Can do multi-head cross-attention in the natural way, eg - d, \A
split up both X;,, and X, in the 'd" dimension. Assumes / - : n A
that both X, and X, have the same embed dim! —I Wv > VvV !
*new” mv
d, vy
Input: X, (shape=[bs, n, d]), X,. (shape=[bs, m, d])
Output: Z (shape=|[bs, n, d]) 7
Note the asymmetry: X, IS what Is transformed! If you're concerned n
_ : that information from X;,, won't get propagated, that's OK, the arch v
Im pO rtant: tht determmes the designers kept that in mind (spoiler alert: residual connection)

output sequence length!

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

Cross-attention: attention scores

- (Cross-attention scores lets us see
what tokens from X src are
‘relevant” to which tokens in X_tgt

e EX: A[2 11 = 0.7 means source "j'ai"
token "ate" has high mportance "déja”
0.7 to the target token "pris" for the o
machine translation task. Xegt pris
- French: "pris" means "took" (aka |§

‘eat”) "petit"
"déjeuner”

o
0.8
0.1
0.1
0.0
0.0
0.0

0.2
0.2
0.7
0.2
0.1
0.1

XST'C

ate" "breakfast"

0.1
0.1
0.2
0.8
0.9
0.9

"already"”

0.0
0.6
0.1
0.0
0.0
0.0

"| ate breakfast already" -> "j'ai déja pris le petit déjeuner”

Vasked self attention: motivation

, . . . Dataset rows
. |Let's consider the machine translation

problem "| ate breakfast already”

- Dataset: paired sentences from source -> "'ai déja pris le petit déjeuner”
anguage fo target language (ex: French (o "Where Is the bathroom?"

Eng“Sh) -> "ou sont les toilettes?"

« [ask:

- (Given English text, translate it to French

Aside: tokenizers and "control characters

. Clever trick: represent the
start and end of a sequence
via "<START>" and "<END>"
tokens. These are special
‘control” tokens added to the
tokenizer vocabulary

["hello"”, "there"]
[TOKEN START] + tokens + [TOKEN END]

tokens
tokens

- Implication: model emits
<END> to signal to stop
generating tokens

Aside: tokenizers and "control characters

« Other common control tokens:

- <PAD>: if you need to pad your input to a specific seg_len (ex: batching N
iInput sentences each with different number of tokens), insert <PAD> tokens

(typically right-pad)

- <UNKNOWN>: if an unexpected input comes in (eg text never seen before In
training), then represent it with this

. <CLS>: the classification token we've seen before!

Demo: huggingtace text encoder

tokenizer = BertTokenizer.from pretrained('bert-base-uncased')
model = BertModel.from pretrained("bert-base-uncased")
input _text = "I am Eric meow"

Tokenizer

input _tokens = tokenizer(input text, return_tensors='pt')
orint("input tokens: ", input tokens)
orint("input tokens.input ids.shape:

orint("convert ids to tokens: ",
tokenizer.convert ids to tokens(input tokens.input ids[©, :]))

, input_tokens.input ids.shape)

output = model(**input tokens)

) . Note: tokenizer can break up a
print("output shape: ", output.last hidden state.shape)

single word into multiple tokens!

input tokens: {'input ids': tensor([[101, 1045, 2572, 4388, 2033, 500
'token_type ids': tensor([[0, ©, ©, 0, @, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]])}
input tokens.input ids.shape: torch.Size([1, 7])
convert ids to tokens: ['[CLS]', 'i', "'am', ‘eric', 'me', '#i#tow', '[SEP]’]

output shape: torch.Size([1l, 7, 768{ In this implementation, <SEP>

IS the "END" token
dim_embed: 768

https://huggingface.co/qoogle-bert/bert-base-uncased

https://huggingface.co/google-bert/bert-base-uncased

Machine translation setup

- (Glven a source-language sentence (EN) and a target-language sentence (FR),
how to we set up the training task/loss for the translation task?

- One way: pose it as a "next token prediction” task!

- Notably: inference is done in an iterative auto-regressive manner

ArgMax: aka "Choose token with largest
predicted probability score"

/

/

Linear, Predicted next token:

/

lter 0 source: [<START>,"My", "name", "is", "Eric", <END>] »

Target O: [<START>] »

Token, predicted probability

" Token@® ("eau"): 0.01
. ey f ' n . 1] .
Note: "Linear, Softmax" produces a probability score vector do::;;izslsthe Tokenl ("boulangerie”): 0.02
over the tokenizer vocabulary size. Ex: Bert tokenizer has entire tokenizer - o o
~30k tokens in its vocabulary [link] vocabulary (ex: | Token42 ("Je"): 0.9
30k vocab!)

https://huggingface.co/google-bert/bert-base-uncased/blob/main/config.json#L22

Translation as "next token prediction” (Inference)

Note: "My name is Eric" -> "Je m'appelle Eric"

lter O s - [<START>,"My", " " "is", "Eric", <END
_ ource: [< >, My", ‘name-, "Is’, "ENc’, < >] » Linear, Predicted next token:
DNN mOdel » Softmax » ArgMaX » "Je"
Target_0: [<START>] »
lter 1 s . [<START>,"My", " " "is", "Eric", <END>
_ ource: [,"My", "name”, "is", "Eric] » » Linear, » AraMax Predicted next token:
DNN model Softmax J "m'appelle”
Target_1: [<START>, "Je'] W
lter_2 source: [<START>,"My", "name", "is", "Eric", <END
_ ource: [< >, My', “hame, IS, "ENC,] » Linear, Predicted next token:
DNN model |®| oo |8 |ArgMax “Eric"
Target_2: [<START>, "Je", "m'appelle"] »
lter 3 s - [<START>,"My", " " "is", "Eric", <END>
_ ource: [< >, My", "name-, "Is’, "ENc,] » Linear, Predicted next token:

Target_3: [<START>, "Je", "m'appelle”, "Eric"] »

Output: [<KSTART>, "Je", "m'appelle”, "Eric", <END>]

Translation loss

- How to build a training loss out of this idea?

- Answer: all-possible next-token prediction tasks (classification loss)!

Train Source: [<START>,"My", "name", "is", "Eric", <END>] »

DNN model Linear |mp
Sample Target_0: [<START>] » » SoftmaxLoss

0
Target Label: "Je" N

Train Source: [<KSTART>,"My", "name", "is", "Eric", <END>] »

DNN model Linear
Sample Target O: [<START>, "Je"] » » » SoftmaxLoss

Target Label: "suis" I

Train Source: [<KSTART>,"My", "name", "is", "Eric", <END>]

» DNN model
»

»

Linear
Sample Target_0: [<START>, "Je", "suis", "Eric"] »

Target Label: <END> I

SoftmaxLoss

Translation loss: optimization opportunity?

- |n practice: for a target sequence with length N, we don't want to have to do N
separate forward passes during training (lots of repeated computation!)

- |s there a way to do a single forward pass passing in the full target sequence
once and getting all N prediction tasks at once?

Train [," o me", "IS", "EI’IC", <END>] .)
sample <sTART>) mp| DN model [y Linearjmp) . Con: N separate forward
e pa.SSGS iS SlOW :(
Train [] _
Sar;\ple : q » DNN model ’ LLLLLL » SSSSSSSSSSS
aaaaaaaaaaaaa s

"My, "name”, "is", "Eric", <END> »
- . » DNN model * Linear ’

Train Source: [<START>,"My", "name", "is", "Eric", <END>] »

Sample | | DNN model Linear
P Target_O: [<START>, "Je", "suis", "Eric", <END>] » » » Softmaxl osses

Target Labels: ["Je", "suis”, "Eric", <END>] —

Translation loss: Attempt 1

- |dea: let's connect our Encoder and
Decoder via cross-attention

- Encoder: given source sequence
(EN), generate new source token
embeds

- Decoder: given target sequence
(FR) and Encoder output (EN),
generate new target token embeds

- Use cross-attention to "fuse”
information from source sequence
(EN) with target sequence (FR)

Token, predicted probability
Token@ ("eau"): 0.01
Tokenl ("boulangerie"): 0.02

Token42 ("Je"): 0.9

Token@ ("eau"): 0.01
Tokenl ("boulangerie"): 0.02

Token9001 ("suis"): 0.75

Ind=0, target label: 42

Ind=1, target label: 9001

Intuition: for each

. I
sequence position [

Target token classifier

‘ind’, predict the
correct output token ~

t

[add & norm]-l-

MLP

Decoder output embeds.
Shape=[bs, seq len tgt, d]

Z 1S the Encoder
output.

Recall: cross-attention
— lets us "mix" two input
sequences

shape=[batchsize, \
seq _len_src, d] 7

[add & norm]+

Output shape: [bs,
seq_len tgt, d]

Note: omitted in this figure

X IS our target sentence,
shape=[bs, seq_len tgt, d
pe=| q_len_tgt, d] — -

/

IS the positional
embeddings added to
input X

Token, predicted probability

Translation loss: Attempt 1

. Question: from a modeling
perspective, why mighnt this current
setup be suboptimal?

- Hint: information leakage

- Answer: decoder can "cheat" and use
iINnformation from later in the
sequence when predicting the
current token!

- Violates our desire that a prediction
for sequence position 'Ind” should
only use information before "ind
("causality")

Intuition: for each

sequence position —

‘ind’, predict the
correct output token

Z 1s the Encoder
output.
shape=[batchsize,
seq _len_src, d]

X IS our target sentence,
shape=[bs, seq_len tgt, d
pe=| q_len_tgt, d] — -

Token, predicted probability
Token@ ("eau"): 0.01
Tokenl ("boulangerie"): 0.02

Token42 ("Je"): 0.9

Token@ ("eau"): 0.01
Tokenl ("boulangerie"): 0.02

Token9001 ("suis"): 0.75

INnd=0, target label: 42

iInd=1, target label: 9001

loss

Target token classifier

t

[add & norm]-l-

MLP

Decoder output embeds.
Shape=[bs, seq len tgt, d]

N\

[add & norm]+

Recall: cross-attention
— lets us "mix" two input
sequences

Output shape: [bs,
seq_len tgt, d]

Note: omitted in this figure

/

IS the positional
embeddings added to
input X

Token, predicted probability

Solution: attention scores (no causal mask)

<START> ‘“je" "suis” "Eric" <END> :
<sTART> [0.8 0.2 0.1 0.1 0.2 (Ledsnom Je
e 10.0 0.1 09 0.3 0.1 s
sus” 10.1 0.2 0.1 06 0.1
Enc” 10.1 0.7 0.2 0.1 0.2
«no> 100 02 08 0.0 09 Z

Issue: when predicting the first token "je", the decoder's \

can utilize information from the rest of the sequence.

Solution: apply a "look ahead" mask to the decoder's
self-attention weights

Solution: attention scores (with causal mask)

<START> 'je" "Suis" "Eric” <END> T
<sTART> [0.8 —inf —inf —inf -—inf T
e 0.0 0.1 —inf -—inf -—inf ["“f")
'suis™ 10.1 0.2 0.1 —inf —inf [_'_)ﬂd”““"" *
Enc 0.1 0.7 0.2 0.1 —inf [ﬂmﬂ;g'j;';gggﬂn]
<END>10.0 0.2 0.8 0.0 0.9 z i i :
\[add & norm]+
We apply the "look ahead" mask before the sﬁ?ﬁn

softmax(), and after the division by vd

X

Masked Attention scores (post softmax)

<START> "|e" "suis" "Eric" <END> <START> "je" "suis" "Eric" <END>
<START> r(0.8 —inf —inf —inf —inf <START> r1.0 O 0 0 0
% 10,0 0.1 —=inf -—inf -—inf ° 10.1 09 O 0 0
'suis” 0.1 0.2 0.1 —inf —inf sus” 101 0.8 0.1 O 0
‘Eic |01 (0.7 0.2 0.1 —inf eict 10.1 0.7 0.2 0.1 0
<ND> QO 0.2 0.8 0.0 0.9 <np> LO.0 0.2 0.3 0.0 0.5

_/

Softmax (along rows)

Note that the Softmax(-Inf) turns into 0.0 probability. Now, the decoder can't "cheat"!

Masked Attention scores (post softmax)

Exercise: show that the output of Masked attention Q = X¢g:t Wy
leads to the property that, for output token at sequence K = Xiq:Wy
position 'ind’, H[bs, !nd,\g] oply mcluc;les Information from V=2XW,
the first “ind" tokens in V. _ QK"
Aka "masked attention indeed fixes the cheating A = mask_attention(Q,K,V) = Softmax(mask(—))
. Vd
problem
H=AV
_10 0 0 0 _VOO VOl 1.0 = VOO 1.0 = VOl
0.1 0.9 0 0 VlO Vll _ 0.1 VOO 0.9 x VlO 0.1 VOl 0.9 x V11
0.1 0.8 0.1 0 VZO VZl - 0.1 = VOO + 0.8 * VlO + 0.1 * VZO 0.1 * VOl + 0.8 * Vll + 0.1 * V21
0.1 0.7 0.2 0.1 _V30 V31_ 0.1 VOO + 0.7 * VlO + 0.2 * VZO + 0.1 * V3O 0.1 = VOl + 0.7 * Vll + 0.2 * V21 + 0.1 * V31
A Vv -
Ago * V10,1 Note that the 1st row of H only depends on the first

A10*V[0,:] 1 A11*V[1,:] row of V, the 2nd row of H only depends on the first

two rows of V, etc.
* * * ,
A20™V0,) + A217 V1, + A227 V)2, Thus, we achieved our goal: the H embedding at

Az0™ Vo, + A31™ V1,0 + A32™ V)2, + A33™ V|3 sequence position ‘ind” only relies on tokens V that
| ' precede it (causally).

Aside: Masked attention implementation

Q= thtwq
Tip: we can implement K = Xig:e Wy
‘mask_attention() by adding a simple V=XgaWy,

QK"

mask to the pre-softmax inputs:

A = mask_attention(Q,K,V) = Softmax(mask(——))
Vd
H = AV

09 02 01 01 0.4 0 —inf —inf —inf —inf 10 0 0 0 O-

01 02 09 01 0.1 0 0 —inf —inf —inf 01 09 0 0 O

Softmax(02 03 02 07 01| + |o o 0 —inf —inf) — |01 08 01 0 O
(along rows) 0.2 08 03 0.2 0.1 0 0 0 0 —lnf 0.1 0.7 0.2 0.1 0
01 03 09 01 1.0 0 0 0 0 0 . 0.0 0.2 0.3 0.0 0.5

\ Y / \ Y) \ Y)

OK' attention_mask A

Vd

Recall: in Python (and most programming
languages?*), -Inf + <any number> = -Inf

*This property is defined by the IEEE floating point standard

Translation loss: Attempt 2!

- We've (finally) arrived at a working
Encoder+Decoder implementation
for machine translation!

- Masked MHA: prevent information
leakage ("preserve causality")

« Cross-attention: fuse information
from source (EN) and target (FR)
sequences

- Train task: next-token prediction
task

Intuition: for each

sequence position —

‘ind’, predict the
correct output token

Z 1s the Encoder
output.
shape=[batchsize,
seq _len_src, d]

X IS our target sentence,

Token, predicted probability
Token@ ("eau"): 0.01
Tokenl ("boulangerie"): 0.02

Token42 ("Je"): 0.9

Token@ ("eau"): 0.01
Tokenl ("boulangerie"): 0.02

Token9001 ("suis"): 0.75

INnd=0, target label: 42

iInd=1, target label: 9001

loss

Target token classifier

t

[add & norm]-l-

MLP

Decoder output embeds.
Shape=[bs, seq len tgt, d]

N\

[add & norm]+

Recall: cross-attention
— lets us "mix" two input
sequences

Output shape: [bs,
seq_len tgt, d]

Masked MHA
prevents decoder
from "cheating"

Note: omitted in this figure

IS the positional

shape=[bs, seq_len_tgt, d] —— o embedcilri;:)%st added 10

Token, predicted probability

Translation loss: next token prediction

+ FOr a given source->target

dataset row, we turn this
iInto multiple prediction
tasks:

Shape=[bs, tgt_seq_len,

vocab_size]

\

Vocab size (logits)
A

target label="Je"

SoftmaxLoss

[

Seq_ind=0

target label="suis"

Seq_ind=1

/

SoftmaxLoss

Seq_Ind=2

e

target label="Eric"

Seq_Ind=3

SoftmaxLoss

Encoder

*

Linear

*

| am Eric

*

Decoder

*

target label="<stop>"

SoftmaxLoss

<start> Je suis Eric <end>

Due to masked self
attention in decoder,
these predictions don't
"cheat" and use decoder

Inputs

Encoder-Decoder models

- The « "Attention Is All You Need" paper
link|

- [asks

- English->German, English->French
translation

- "English constituency parsing”

Aka: Parse a sentence into a subject/verb/noun

parse tree
Sentence (S)
|
o t——————— +
| |
Noun (N) Verb Phrase (VP)
| |
John +-—————- - +
| |
verb (V) Noun (N)
| |
sees Bill

https://nlpprogress.com/english/constituency parsing.html

Encoder

—

Qutput
Probabilities
|
| Softmax |
| Linear |
4 N
| Add & Norm |
Feed
Forward
Y\ |
— s \ Add & Norm J=
Add & Norm Mult-Head
Feed Attention
Forward X ! } J)
— 1 (——
Nix | Add & Norm Jee=
Add &_ Norm | Maskod
Multi-Head Multi-Head
Attention Attention
A J) A J)
\ — J _ _"JJ
Positional g
Encoding 1 ¢
Input Output
— Embedding Embedding
Inputs Qutputs
(shifted right)

Figure 1: The Transformer - model architecture.

Positional
Encoding

— Decoder

—

https://arxiv.org/abs/1706.03762
https://nlpprogress.com/english/constituency_parsing.html

Many more fun topics!

- Inference improvements for generative tasks
- Beam search
- Decoder-only architectures
- Ex: OpenAl's GPT models
- More natural language processing (NLP) applications
- (Generative text models (aka Chat-GPT)
- Pretraining/training/fine-tuning strategies

- ...If we have time post-midterm, we'll revisit this!

unused) Aside: Beam search

and

Ffuns funs

0.05
has
a
0.
3 .
is

The

0
/ 9
The

0.3

guy

car car

b

0.3 0 =
js Dl / >
drives drives

0.1 0.1

0.5 0.5
turns furms
a.

0.2 2

https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate

	Slide 1: Lecture 14: Transformers (Part 4)
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: DSP: Midterms
	Slide 5: Today's lecture
	Slide 6: (for fun)
	Slide 7: MHA (v1.5): multiple heads + split
	Slide 8: Encoder: Classification?
	Slide 9: Encoder Classification V0: Naive classifier
	Slide 10: Classification approach 1: "CLS" token
	Slide 11: Classification approach 2: Token aggregation
	Slide 12: Decoder
	Slide 13: Cross attention
	Slide 14: Cross attention: seq lengths
	Slide 15: Cross attention: equations ("single head")
	Slide 16: Cross-attention: attention scores
	Slide 17: Masked self attention: motivation
	Slide 18: Aside: tokenizers and "control characters"
	Slide 19: Aside: tokenizers and "control characters"
	Slide 20: Demo: huggingface text encoder
	Slide 21: Machine translation setup
	Slide 22: Translation as "next token prediction" (inference)
	Slide 23: Translation loss
	Slide 24: Translation loss: optimization opportunity?
	Slide 25: Translation loss: Attempt 1
	Slide 26: Translation loss: Attempt 1
	Slide 27: Solution: attention scores (no causal mask)
	Slide 28: Solution: attention scores (with causal mask)
	Slide 29: Masked Attention scores (post softmax)
	Slide 30: Masked Attention scores (post softmax)
	Slide 31: Aside: Masked attention implementation
	Slide 32: Translation loss: Attempt 2!
	Slide 33: Translation loss: next token prediction
	Slide 34: Encoder-Decoder models
	Slide 35: Many more fun topics!
	Slide 36: (unused) Aside: Beam search

