
Speaker: Eric Kim

Lecture 14: Transformers (Part 4)
Data C182 (Fall 2024). Week 08. Tuesday Oct 15th, 2024
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Announcements

• HW02 ("RNNS") out! Due: Sun Oct 27th 11:59PM PST

• Please start early!
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Announcements

• Midterm is coming up! [link]

• Tuesday, October 22th 2024, 6:30 PM - 8 PM.

• Location: ~50% in 10 Evans, ~50% in Physics 1

• We'll send exam room assignments to students shortly

• If you're unable to make this time, please contact us ASAP (make a private Ed 
post)

• Midterm will cover everything from:

• Lectures, discussions, HW01+HW02

• In-person, paper + pencil exam. 

• DSP: if you need exam accommodations, please contact us ASAP (private post 
on Ed)
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https://edstem.org/us/courses/64085/discussion/5495397


DSP: Midterms

• DSP students with exam accommodations: you should have received an email 
regarding scheduling your midterm exam. Please fill out the "V2" google form 
ASAP so that we can schedule your midterm



Today's lecture

• (Correction on Lecture 12: MHA)

• Transformers (Part 3!)

• Encoders: classification techniques

• Decoders

• Cross attention

• Masked self-attention ("causal self attention")

• Sequence-to-sequence tasks

• Ex: Machine translation, text generation



(for fun)

• Deep in the pytorch implementation for 
`torch.nn.functional.multi_head_attention_forward()`, 
there is this funny comment [link]:

• (open-source can be fun!)

https://github.com/pytorch/pytorch/blob/41977a05314bbf537e1c5d6cf5916a368d1907d9/torch/nn/functional.py#L6235


MHA (v1.5): multiple heads + split
In practice: to reduce computation costs, rather than have 

each self-attention module operate on the full embedding 

`d`, we divide up the embeddings into `h` chunks.

Example: for d=16 and h=2 heads,

Head0: work on first 8 embed dims: X[:, :8]

Head1: work on last 8 embed dims: X[:, 8:]

shape=[seq_len, h*𝑑ℎ] 

=[seq_len, d]

Learned linear 

transform. 

Shape=[d, d]

𝒅𝒉 = 𝒇𝒍𝒐𝒐𝒓(
𝒅

𝒉
)

"effective" embed 

dimensionality for 

each head

𝑄ℎ, 𝐾ℎ, 𝑉ℎ
Shape=[seq_len, 𝑑ℎ]

𝑊ℎ
𝑞
,𝑊ℎ

𝑘, 𝑉ℎ
𝑣

Shape=[d, 𝑑ℎ]

𝑋ℎ shape=[seq_len, d]

Implication: with this embedding "splitting", a MHA with h heads 

(operating on d//h dims) is roughly the same computation cost as a

MHA with 1 head but operating on the full embedding dimensionality.

Split (d -> 𝑑ℎ)

Neat animation from: https://towardsdatascience.com/illustrated-

guide-to-transformers-step-by-step-explanation-f74876522bc0

Rev02(2024-10-15) This slide originally had a mistake: it stated that we split X 

into `h` chunks for MHA. This is not true, we split Q,K,V into `h` chunks: 

𝑄ℎ, 𝐾ℎ, 𝑉ℎ

(Correction from Lecture 12) (slide pdfs on website is updated)

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0


Encoder: Classification?

TransformerEncoder

pytorch code: [link]

Encoder 

blocks

Classification 

head

Task 

head(s)
(eg: classification, 

detection, regression, 

etc)

Output Token 

EmbedsNew learned 

representation

Recall: a Transformer encoder performs the following:

• Input: sequence X (shape=[batchsize, seq_len, 

dim_embed])

• Output: representation Y (shape=[batchsize, seq_len, 

dim_embed])

• Where Y is a learned transformation of X (eg via multi-

head self attention, FFNs, etc)

• Notably, output token Y[:, ind_token, :] corresponds to 

input token X[:, ind_token, :]

• Question: how to perform classification on the output Y?

https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L309


Encoder Classification V0: Naive classifier

• Proposal: flatten the Y from [batchsize, seq_len, 
dim_hidden] to [batchsize, seq_len*dim_hidden], 
and add a Linear(in=seq_len*dim_embed, 
out=num_classes) layer after the Encoder 
output.

• Question: what are the pros/cons of this?

Pro: Simple

Con:

Hard codes the sequence length into the classifier, which 

means you can't easily modify the sequence length past 

whatever length you used during training

Can be computationally expensive: for long sequence 

lengths and large number of target classes, the Linear layer 

can become too large

Linear

Output Token 

Embeds

Flatten

Softmax

Shape=[bs, seq_len, d]

Shape=[bs, seq_len*d]

Shape=[bs, num_classes]

Shape=[bs, num_classes]

W.shape=

[seq_len*d, 

num_classes]

Encoder



Classification approach 1: "CLS" token

• Key idea: prepend a "CLS" token to the 
start of every sequence. Then, train a 
classifier on top of this CLS token 
embedding

• Intuition: CLS token stores the "global" 
info about the sentence

"CLS" token: stores global info
Classifier

"Sentiment: Very 

Positive (5/5)"



Classification approach 2: Token aggregation

• Key idea: aggregate the `seq_len` output 
tokens into a single output embedding, 
then add your classifier on top of this

• Ex: average, max
Linear

"Sentiment: Very 

Positive (5/5)"

Aggregation (ex: avg, max)

Before aggregation: [bs, seq_len, d]

After aggregation: [bs, d]

Question: what is the shape of 

the Linear layer's W weight?

Answer: [num_classes, d]



Decoder

• Useful for tasks involving token generation

• Ex: machine translation, text 
summarization, question-and-answer 
bots, etc.

• Key concepts

• Cross-attention

• Masked self attention

• Auto-regressive inference

Encoder

Decoder



Cross attention

• Recall: in the Encoder's multi-head attention (MHA), we had 
only one input sequence, aka "Self attention"

• "Cross attention": MHA but with two different input seqs.

• Tip: consider English->French translation, where we have a target 
sequence 𝑋𝑡𝑔𝑡 (French) and an input sequence 𝑋𝑠𝑟𝑐 (English)

• Intuition: given 𝑋𝑡𝑔𝑡 and 𝑋𝑠𝑟𝑐, do the following

• Cross-attention weights: determine how important tokenA
from 𝑋𝑠𝑟𝑐 is to tokenB from 𝑋𝑡𝑔𝑡

• Attention-weighted transform: given cross-attention weights, 
transform 𝑋𝑠𝑟𝑐

Self-attention

Cross-attention

𝑋𝑡𝑔𝑡 𝑋𝑠𝑟𝑐



Cross attention: seq lengths

• Note that, in this 
formulation, the 
sequence lengths are 
allowed to be different 
for 𝑋𝑡𝑔𝑡 and 𝑋𝑠𝑟𝑐!

• Fortunately, all shapes 
adjust in the natural way:

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

Input: 𝑋𝑡𝑔𝑡 (shape=[bs, n, d]), 𝑋𝑠𝑟𝑐 (shape=[bs, m, d])

Output: Z (shape=[bs, n, d])

𝑋𝑡𝑔𝑡

𝑋𝑠𝑟𝑐

Important: 𝑋𝑡𝑔𝑡 determines the 

output sequence length!

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention


Cross attention: equations ("single head")

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

Input: 𝑋𝑡𝑔𝑡 (shape=[bs, n, d]), 𝑋𝑠𝑟𝑐 (shape=[bs, m, d])

Output: Z (shape=[bs, n, d])

𝑋𝑡𝑔𝑡

𝑋𝑠𝑟𝑐

Important: 𝑋𝑡𝑔𝑡 determines the 

output sequence length!

Note the asymmetry: 𝑋𝑠𝑟𝑐 is what is transformed!  If you're concerned 

that information from 𝑋𝑡𝑔𝑡 won't get propagated, that's OK, the arch 

designers kept that in mind (spoiler alert: residual connection)

𝑸 = 𝑿𝒕𝒈𝒕𝑾𝒒

𝑲 = 𝑿𝒔𝒓𝒄𝑾𝒌

𝑽 = 𝑿𝒔𝒓𝒄𝑾𝒗

𝑨 = 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑸,𝑲, 𝑽 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(
𝑸𝑲𝑻

𝒅
)

𝑶𝒖𝒕 = 𝑨𝑽

Can do multi-head cross-attention in the natural way, eg

split up both 𝑋𝑡𝑔𝑡 and 𝑋𝑠𝑟𝑐 in the `d` dimension. Assumes 

that both 𝑋𝑡𝑔𝑡 and 𝑋𝑠𝑟𝑐 have the same embed dim!

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention


Cross-attention: attention scores

• Cross-attention scores lets us see 
what tokens from X_src are 
"relevant" to which tokens in X_tgt

• Ex: A[2, 1] = 0.7 means source 
token "ate" has high importance 
0.7 to the target token "pris" for the 
machine translation task.

• French: "pris" means "took" (aka 
"eat")

"I" "ate" "breakfast" "already"

"le"

"I ate breakfast already" -> "j'ai déjà pris le petit déjeuner"

"pris"

"j'ai"

"déjà"

"petit"

"déjeuner"

0.8 0.2 0.1 0.0
0.1 0.2 0.1 0.6
0.1 0.7 0.2 0.1
0.0 0.2 0.8 0.0
0.0 0.1 0.9 0.0
0.0 0.1 0.9 0.0

𝑋𝑠𝑟𝑐

𝑋𝑡𝑔𝑡



Masked self attention: motivation

• Let's consider the machine translation 
problem

• Dataset: paired sentences from source 
language to target language (ex: French to 
English)

• Task:

• Given English text, translate it to French

"I ate breakfast already" 

-> "j'ai déjà pris le petit déjeuner"

"Where is the bathroom?"

-> "où sont les toilettes?"

...

Dataset rows



Aside: tokenizers and "control characters"

• Clever trick: represent the 
start and end of a sequence 
via "<START>" and "<END>" 
tokens. These are special 
"control" tokens added to the 
tokenizer vocabulary

• Implication: model emits 
<END> to signal to stop 
generating tokens

tokens = ["hello", "there"]
tokens = [TOKEN_START] + tokens + [TOKEN_END]



Aside: tokenizers and "control characters"

• Other common control tokens:

• <PAD>: if you need to pad your input to a specific seq_len (ex: batching N 
input sentences each with different number of tokens), insert <PAD> tokens 
(typically right-pad)

• <UNKNOWN>: if an unexpected input comes in (eg text never seen before in 
training), then represent it with this

• <CLS>: the classification token we've seen before!

• ...



Demo: huggingface text encoder

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained("bert-base-uncased")
input_text = "I am Eric meow"

# Tokenizer
input_tokens = tokenizer(input_text, return_tensors='pt')
print("input_tokens: ", input_tokens)
print("input_tokens.input_ids.shape: ", input_tokens.input_ids.shape)
print("convert_ids_to_tokens: ", 
tokenizer.convert_ids_to_tokens(input_tokens.input_ids[0, :]))

output = model(**input_tokens)
print("output shape: ", output.last_hidden_state.shape)

https://huggingface.co/google-bert/bert-base-uncased

input_tokens:  {'input_ids': tensor([[ 101, 1045, 2572, 4388, 2033, 5004,  102]]), 
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]])}
input_tokens.input_ids.shape:  torch.Size([1, 7])
convert_ids_to_tokens:  ['[CLS]', 'i', 'am', 'eric', 'me', '##ow', '[SEP]']

output shape:  torch.Size([1, 7, 768])

dim_embed: 768

Note: tokenizer can break up a 

single word into multiple tokens!

In this implementation, <SEP> 

is the "END" token

https://huggingface.co/google-bert/bert-base-uncased


Machine translation setup

• Given a source-language sentence (EN) and a target-language sentence (FR), 
how to we set up the training task/loss for the translation task?

• One way: pose it as a "next token prediction" task!

• Notably: inference is done in an iterative auto-regressive manner

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>]

DNN model
Linear, 

Softmax
ArgMax

Predicted next token: 

"Je"

Iter_0

Note: "Linear, Softmax" produces a probability score vector 

over the tokenizer vocabulary size. Ex: Bert tokenizer has 

~30k tokens in its vocabulary [link]

ArgMax: aka "Choose token with largest 

predicted probability score"

# Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token42 ("Je"): 0.9
...

Softmax is 

done across the 

entire tokenizer 

vocabulary (ex: 

30k vocab!)

https://huggingface.co/google-bert/bert-base-uncased/blob/main/config.json#L22


Translation as "next token prediction" (inference)
Note: "My name is Eric" -> "Je m'appelle Éric"

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>]

DNN model
Linear, 

Softmax
ArgMax

Predicted next token: 

"Je"

Iter_0

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_1: [<START>, "Je"]

DNN model
Linear, 

Softmax
ArgMax

Predicted next token: 

"m'appelle"

Iter_1

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_2: [<START>, "Je", "m'appelle"]

DNN model
Linear, 

Softmax
ArgMax

Predicted next token: 

"Eric"

Iter_2

Output: [<START>, "Je", "m'appelle", "Eric", <END>]

Source: [<START>,"My", "name", "is", "Eric", <END>]

DNN model
Linear, 

Softmax
ArgMax

Predicted next token: 

<END>

Iter_3

Target_3: [<START>, "Je", "m'appelle", "Eric"]



Translation loss

• How to build a training loss out of this idea?

• Answer: all-possible next-token prediction tasks (classification loss)!

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>]
DNN model Linear

Target Label: "Je"

Train 

Sample 

0
SoftmaxLoss

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>, "Je"]
DNN model Linear

Target Label: "suis"

Train 

Sample 

1
SoftmaxLoss

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>, "Je", "suis", "Eric"]
DNN model Linear

Target Label: <END>

Train 

Sample 

N
SoftmaxLoss

...



Translation loss: optimization opportunity?

• In practice: for a target sequence with length N, we don't want to have to do N 
separate forward passes during training (lots of repeated computation!)

• Is there a way to do a single forward pass passing in the full target sequence 
once and getting all N prediction tasks at once?

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>, "Je", "suis", "Eric", <END>]
DNN model Linear

Target Labels: ["Je", "suis", "Eric", <END>]

Train 

Sample
SoftmaxLosses

Con: N separate forward 

passes is slow :(



Translation loss: Attempt 1

• Idea: let's connect our Encoder and 
Decoder via cross-attention

• Encoder: given source sequence 
(EN), generate new source token 
embeds

• Decoder: given target sequence 
(FR) and Encoder output (EN), 
generate new target token embeds

• Use cross-attention to "fuse" 
information from source sequence 
(EN) with target sequence (FR)

Z is the Encoder 

output. 

shape=[batchsize, 

seq_len_src, d]

Recall: cross-attention 

lets us "mix" two input 

sequences

Output shape: [bs, 

seq_len_tgt, d]

X is our target sentence, 

shape=[bs, seq_len_tgt, d]

Decoder output embeds. 

Shape=[bs, seq_len_tgt, d]

Target token classifier 

loss

Intuition: for each 

sequence position 

`ind`, predict the 

correct output token

# Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token42 ("Je"): 0.9
...

ind=0, target label: 42

# Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token9001 ("suis"): 0.75
...

ind=1, target label: 9001

Note: omitted in this figure 

is the positional 

embeddings added to 

input X



Translation loss: Attempt 1

• Question: from a modeling 
perspective, why might this current 
setup be suboptimal?

• Hint: information leakage

• Answer: decoder can "cheat" and use 
information from later in the 
sequence when predicting the 
current token!

• Violates our desire that a prediction 
for sequence position `ind` should 
only use information before `ind` 
("causality")

Z is the Encoder 

output. 

shape=[batchsize, 

seq_len_src, d]

Recall: cross-attention 

lets us "mix" two input 

sequences

Output shape: [bs, 

seq_len_tgt, d]

X is our target sentence, 

shape=[bs, seq_len_tgt, d]

Decoder output embeds. 

Shape=[bs, seq_len_tgt, d]

Target token classifier 

loss

Intuition: for each 

sequence position 

`ind`, predict the 

correct output token

# Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token42 ("Je"): 0.9
...

ind=0, target label: 42

# Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token9001 ("suis"): 0.75
...

ind=1, target label: 9001

Note: omitted in this figure 

is the positional 

embeddings added to 

input X



Solution: attention scores (no causal mask)

<START> "je" "suis" "Eric"

"Eric"

"je"

"suis"

0.8 0.2 0.1 0.1 0.2
0.0 0.1 0.9 0.3 0.1
0.1 0.2 0.1 0.6 0.1
0.1 0.7 0.2 0.1 0.2
0.0 0.2 0.8 0.0 0.9

<START>

<END>

Issue: when predicting the first token "je", the decoder's

can utilize information from the rest of the sequence.

Solution: apply a "look ahead" mask to the decoder's 

self-attention weights

<END>



Solution: attention scores (with causal mask)

<START> "je" "suis" "Eric"

"Eric"

"je"

"suis"

0.8 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.0 0.1 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.1 0.2 0.1 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.1 0.7 0.2 0.1 −𝑖𝑛𝑓
0.0 0.2 0.8 0.0 0.9

<START>

<END>

We apply the "look ahead" mask before the 

softmax(), and after the division by 𝑑

<END>



Masked Attention scores (post softmax)

<START> "je" "suis" "Eric"

"Eric"

"je"

"suis"

0.8 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.0 0.1 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.1 0.2 0.1 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.1 0.7 0.2 0.1 −𝑖𝑛𝑓
0.0 0.2 0.8 0.0 0.9

<START>

<END>

<END> <START> "je" "suis" "Eric"

"Eric"

"je"

"suis"

1.0 0 0 0 0
0.1 0.9 0 0 0
0.1 0.8 0.1 0 0
0.1 0.7 0.2 0.1 0
0.0 0.2 0.3 0.0 0.5

<START>

<END>

<END>

Softmax (along rows)

Note that the Softmax(-Inf) turns into 0.0 probability. Now, the decoder can't "cheat"!



Masked Attention scores (post softmax)

1.0 0 0 0
0.1 0.9 0 0
0.1 0.8 0.1 0
0.1 0.7 0.2 0.1

Exercise: show that the output of Masked attention 

leads to the property that, for output token at sequence 

position `ind`, H[bs, ind, :] only includes information from 

the first `ind` tokens in V.

Aka "masked attention indeed fixes the cheating 

problem"

𝑸 = 𝑿𝒕𝒈𝒕𝑾𝒒

𝑲 = 𝑿𝒕𝒈𝒕𝑾𝒌

𝑽 = 𝑿𝒕𝒈𝒕𝑾𝒗

𝑨 = 𝒎𝒂𝒔𝒌_𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑸,𝑲, 𝑽 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝒎𝒂𝒔𝒌(
𝑸𝑲𝑻

𝒅
))

𝑯 = 𝑨𝑽

𝑉00 𝑉01
𝑉10 𝑉11
𝑉20 𝑉21
𝑉30 𝑉31

1.0 ∗ 𝑉00 1.0 ∗ 𝑉01
0.1 ∗ 𝑉00 + 0.9 ∗ 𝑉10 0.1 ∗ 𝑉01 + 0.9 ∗ 𝑉11

0.1 ∗ 𝑉00 + 0.8 ∗ 𝑉10 + 0.1 ∗ 𝑉20 0.1 ∗ 𝑉01 + 0.8 ∗ 𝑉11 + 0.1 ∗ 𝑉21
0.1 ∗ 𝑉00 + 0.7 ∗ 𝑉10 + 0.2 ∗ 𝑉20 + 0.1 ∗ 𝑉30 0.1 ∗ 𝑉01 + 0.7 ∗ 𝑉11 + 0.2 ∗ 𝑉21 + 0.1 ∗ 𝑉31

=

A V H

𝐴00 ∗ 𝑉[0,:]
𝐴10*𝑉[0,:] + 𝐴11*𝑉[1,:]

𝐴20*𝑉[0,:] + 𝐴21*𝑉[1,:] + 𝐴22*𝑉[2,:]
𝐴30*𝑉[0,:] + 𝐴31*𝑉[1,:] + 𝐴32*𝑉[2,:] + 𝐴33*𝑉[3,:]

=

Note that the 1st row of H only depends on the first 

row of V, the 2nd row of H only depends on the first 

two rows of V, etc.

Thus, we achieved our goal: the H embedding at 

sequence position `ind` only relies on tokens V that 

precede it (causally).



Aside: Masked attention implementation

Tip: we can implement 

`mask_attention()` by adding a simple 

mask to the pre-softmax inputs:

𝑸 = 𝑿𝒕𝒈𝒕𝑾𝒒

𝑲 = 𝑿𝒕𝒈𝒕𝑾𝒌

𝑽 = 𝑿𝒕𝒈𝒕𝑾𝒗

𝑨 = 𝒎𝒂𝒔𝒌_𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑸,𝑲, 𝑽 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝒎𝒂𝒔𝒌(
𝑸𝑲𝑻

𝒅
))

𝑯 = 𝑨𝑽

0.9 0.2 0.1 0.1 0.4
0.1 0.2 0.9 0.1 0.1
0.2 0.3 0.2 0.7 0.1
0.2 0.8 0.3 0.2 0.1
0.1 0.3 0.9 0.1 1.0

0 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 0 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 0 0 −𝑖𝑛𝑓
0 0 0 0 0

+Softmax( )

𝑄𝐾𝑇

𝑑

attention_mask

1.0 0 0 0 0
0.1 0.9 0 0 0
0.1 0.8 0.1 0 0
0.1 0.7 0.2 0.1 0
0.0 0.2 0.3 0.0 0.5

=

A

(along rows)

Recall: in Python (and most programming 

languages*), `-Inf + <any number> = -Inf`
*This property is defined by the IEEE floating point standard



Translation loss: Attempt 2!

• We've (finally) arrived at a working 
Encoder+Decoder implementation 
for machine translation!

• Masked MHA: prevent information 
leakage ("preserve causality")

• Cross-attention: fuse information 
from source (EN) and target (FR) 
sequences

• Train task: next-token prediction 
task

Z is the Encoder 

output. 

shape=[batchsize, 

seq_len_src, d]

Recall: cross-attention 

lets us "mix" two input 

sequences

Output shape: [bs, 

seq_len_tgt, d]

X is our target sentence, 

shape=[bs, seq_len_tgt, d]

Decoder output embeds. 

Shape=[bs, seq_len_tgt, d]

Target token classifier 

loss

Intuition: for each 

sequence position 

`ind`, predict the 

correct output token

# Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token42 ("Je"): 0.9
...

ind=0, target label: 42

# Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token9001 ("suis"): 0.75
...

ind=1, target label: 9001

Note: omitted in this figure 

is the positional 

embeddings added to 

input X

Masked MHA 

prevents decoder 

from "cheating"



Translation loss: next token prediction

• For a given source->target 
dataset row, we turn this 
into multiple prediction 
tasks:

Encoder Decoder

I am Eric

target label="Je"

<start> Je suis Eric <end>

Linear

SoftmaxLoss

Shape=[bs, tgt_seq_len, 

vocab_size]

...

...

...

...

Seq_ind=0

Seq_ind=1

Seq_ind=2

Seq_ind=3

Vocab size (logits)

SoftmaxLoss

SoftmaxLoss

SoftmaxLoss

target label="suis"

target label="Eric"

target label="<stop>"

Due to masked self 

attention in decoder, 

these predictions don't 

"cheat" and use decoder 

inputs 



Encoder-Decoder models

• The OG "Attention Is All You Need" paper 
[link]

• Tasks

• English->German, English->French 
translation

• "English constituency parsing"

• Aka: Parse a sentence into a subject/verb/noun 
parse tree

Encoder

Decoder

https://nlpprogress.com/english/constituency_parsing.html

https://arxiv.org/abs/1706.03762
https://nlpprogress.com/english/constituency_parsing.html


Many more fun topics!

• Inference improvements for generative tasks

• Beam search

• Decoder-only architectures

• Ex: OpenAI's GPT models

• More natural language processing (NLP) applications

• Generative text models (aka Chat-GPT)

• Pretraining/training/fine-tuning strategies

• ...if we have time post-midterm, we'll revisit this!



(unused) Aside: Beam search

https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate
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