
Speaker: Eric Kim

Lecture 14: Transformers (Part 4)
Data C182 (Fall 2024). Week 08. Tuesday Oct 15th, 2024

1

Announcements

• HW02 ("RNNS") out! Due: Sun Oct 27th 11:59PM PST

• Please start early!

2

Announcements

• Midterm is coming up! [link]

• Tuesday, October 22th 2024, 6:30 PM - 8 PM.

• Location: ~50% in 10 Evans, ~50% in Physics 1

• We'll send exam room assignments to students shortly

• If you're unable to make this time, please contact us ASAP (make a private Ed
post)

• Midterm will cover everything from:

• Lectures, discussions, HW01+HW02

• In-person, paper + pencil exam.

• DSP: if you need exam accommodations, please contact us ASAP (private post
on Ed)

3

https://edstem.org/us/courses/64085/discussion/5495397

DSP: Midterms

• DSP students with exam accommodations: you should have received an email
regarding scheduling your midterm exam. Please fill out the "V2" google form
ASAP so that we can schedule your midterm

Today's lecture

• (Correction on Lecture 12: MHA)

• Transformers (Part 3!)

• Encoders: classification techniques

• Decoders

• Cross attention

• Masked self-attention ("causal self attention")

• Sequence-to-sequence tasks

• Ex: Machine translation, text generation

(for fun)

• Deep in the pytorch implementation for
`torch.nn.functional.multi_head_attention_forward()`,
there is this funny comment [link]:

• (open-source can be fun!)

https://github.com/pytorch/pytorch/blob/41977a05314bbf537e1c5d6cf5916a368d1907d9/torch/nn/functional.py#L6235

MHA (v1.5): multiple heads + split
In practice: to reduce computation costs, rather than have

each self-attention module operate on the full embedding

`d`, we divide up the embeddings into `h` chunks.

Example: for d=16 and h=2 heads,

Head0: work on first 8 embed dims: X[:, :8]

Head1: work on last 8 embed dims: X[:, 8:]

shape=[seq_len, h*𝑑ℎ]

=[seq_len, d]

Learned linear

transform.

Shape=[d, d]

𝒅𝒉 = 𝒇𝒍𝒐𝒐𝒓(
𝒅

𝒉
)

"effective" embed

dimensionality for

each head

𝑄ℎ, 𝐾ℎ, 𝑉ℎ
Shape=[seq_len, 𝑑ℎ]

𝑊ℎ
𝑞
,𝑊ℎ

𝑘, 𝑉ℎ
𝑣

Shape=[d, 𝑑ℎ]

𝑋ℎ shape=[seq_len, d]

Implication: with this embedding "splitting", a MHA with h heads

(operating on d//h dims) is roughly the same computation cost as a

MHA with 1 head but operating on the full embedding dimensionality.

Split (d -> 𝑑ℎ)

Neat animation from: https://towardsdatascience.com/illustrated-

guide-to-transformers-step-by-step-explanation-f74876522bc0

Rev02(2024-10-15) This slide originally had a mistake: it stated that we split X

into `h` chunks for MHA. This is not true, we split Q,K,V into `h` chunks:

𝑄ℎ, 𝐾ℎ, 𝑉ℎ

(Correction from Lecture 12) (slide pdfs on website is updated)

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

Encoder: Classification?

TransformerEncoder

pytorch code: [link]

Encoder

blocks

Classification

head

Task

head(s)
(eg: classification,

detection, regression,

etc)

Output Token

EmbedsNew learned

representation

Recall: a Transformer encoder performs the following:

• Input: sequence X (shape=[batchsize, seq_len,

dim_embed])

• Output: representation Y (shape=[batchsize, seq_len,

dim_embed])

• Where Y is a learned transformation of X (eg via multi-

head self attention, FFNs, etc)

• Notably, output token Y[:, ind_token, :] corresponds to

input token X[:, ind_token, :]

• Question: how to perform classification on the output Y?

https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L309

Encoder Classification V0: Naive classifier

• Proposal: flatten the Y from [batchsize, seq_len,
dim_hidden] to [batchsize, seq_len*dim_hidden],
and add a Linear(in=seq_len*dim_embed,
out=num_classes) layer after the Encoder
output.

• Question: what are the pros/cons of this?

Pro: Simple

Con:

Hard codes the sequence length into the classifier, which

means you can't easily modify the sequence length past

whatever length you used during training

Can be computationally expensive: for long sequence

lengths and large number of target classes, the Linear layer

can become too large

Linear

Output Token

Embeds

Flatten

Softmax

Shape=[bs, seq_len, d]

Shape=[bs, seq_len*d]

Shape=[bs, num_classes]

Shape=[bs, num_classes]

W.shape=

[seq_len*d,

num_classes]

Encoder

Classification approach 1: "CLS" token

• Key idea: prepend a "CLS" token to the
start of every sequence. Then, train a
classifier on top of this CLS token
embedding

• Intuition: CLS token stores the "global"
info about the sentence

"CLS" token: stores global info
Classifier

"Sentiment: Very

Positive (5/5)"

Classification approach 2: Token aggregation

• Key idea: aggregate the `seq_len` output
tokens into a single output embedding,
then add your classifier on top of this

• Ex: average, max
Linear

"Sentiment: Very

Positive (5/5)"

Aggregation (ex: avg, max)

Before aggregation: [bs, seq_len, d]

After aggregation: [bs, d]

Question: what is the shape of

the Linear layer's W weight?

Answer: [num_classes, d]

Decoder

• Useful for tasks involving token generation

• Ex: machine translation, text
summarization, question-and-answer
bots, etc.

• Key concepts

• Cross-attention

• Masked self attention

• Auto-regressive inference

Encoder

Decoder

Cross attention

• Recall: in the Encoder's multi-head attention (MHA), we had
only one input sequence, aka "Self attention"

• "Cross attention": MHA but with two different input seqs.

• Tip: consider English->French translation, where we have a target
sequence 𝑋𝑡𝑔𝑡 (French) and an input sequence 𝑋𝑠𝑟𝑐 (English)

• Intuition: given 𝑋𝑡𝑔𝑡 and 𝑋𝑠𝑟𝑐, do the following

• Cross-attention weights: determine how important tokenA
from 𝑋𝑠𝑟𝑐 is to tokenB from 𝑋𝑡𝑔𝑡

• Attention-weighted transform: given cross-attention weights,
transform 𝑋𝑠𝑟𝑐

Self-attention

Cross-attention

𝑋𝑡𝑔𝑡 𝑋𝑠𝑟𝑐

Cross attention: seq lengths

• Note that, in this
formulation, the
sequence lengths are
allowed to be different
for 𝑋𝑡𝑔𝑡 and 𝑋𝑠𝑟𝑐!

• Fortunately, all shapes
adjust in the natural way:

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

Input: 𝑋𝑡𝑔𝑡 (shape=[bs, n, d]), 𝑋𝑠𝑟𝑐 (shape=[bs, m, d])

Output: Z (shape=[bs, n, d])

𝑋𝑡𝑔𝑡

𝑋𝑠𝑟𝑐

Important: 𝑋𝑡𝑔𝑡 determines the

output sequence length!

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

Cross attention: equations ("single head")

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

Input: 𝑋𝑡𝑔𝑡 (shape=[bs, n, d]), 𝑋𝑠𝑟𝑐 (shape=[bs, m, d])

Output: Z (shape=[bs, n, d])

𝑋𝑡𝑔𝑡

𝑋𝑠𝑟𝑐

Important: 𝑋𝑡𝑔𝑡 determines the

output sequence length!

Note the asymmetry: 𝑋𝑠𝑟𝑐 is what is transformed! If you're concerned

that information from 𝑋𝑡𝑔𝑡 won't get propagated, that's OK, the arch

designers kept that in mind (spoiler alert: residual connection)

𝑸 = 𝑿𝒕𝒈𝒕𝑾𝒒

𝑲 = 𝑿𝒔𝒓𝒄𝑾𝒌

𝑽 = 𝑿𝒔𝒓𝒄𝑾𝒗

𝑨 = 𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑸,𝑲, 𝑽 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(
𝑸𝑲𝑻

𝒅
)

𝑶𝒖𝒕 = 𝑨𝑽

Can do multi-head cross-attention in the natural way, eg

split up both 𝑋𝑡𝑔𝑡 and 𝑋𝑠𝑟𝑐 in the `d` dimension. Assumes

that both 𝑋𝑡𝑔𝑡 and 𝑋𝑠𝑟𝑐 have the same embed dim!

https://magazine.sebastianraschka.com/p/understanding-and-coding-self-attention

Cross-attention: attention scores

• Cross-attention scores lets us see
what tokens from X_src are
"relevant" to which tokens in X_tgt

• Ex: A[2, 1] = 0.7 means source
token "ate" has high importance
0.7 to the target token "pris" for the
machine translation task.

• French: "pris" means "took" (aka
"eat")

"I" "ate" "breakfast" "already"

"le"

"I ate breakfast already" -> "j'ai déjà pris le petit déjeuner"

"pris"

"j'ai"

"déjà"

"petit"

"déjeuner"

0.8 0.2 0.1 0.0
0.1 0.2 0.1 0.6
0.1 0.7 0.2 0.1
0.0 0.2 0.8 0.0
0.0 0.1 0.9 0.0
0.0 0.1 0.9 0.0

𝑋𝑠𝑟𝑐

𝑋𝑡𝑔𝑡

Masked self attention: motivation

• Let's consider the machine translation
problem

• Dataset: paired sentences from source
language to target language (ex: French to
English)

• Task:

• Given English text, translate it to French

"I ate breakfast already"

-> "j'ai déjà pris le petit déjeuner"

"Where is the bathroom?"

-> "où sont les toilettes?"

...

Dataset rows

Aside: tokenizers and "control characters"

• Clever trick: represent the
start and end of a sequence
via "<START>" and "<END>"
tokens. These are special
"control" tokens added to the
tokenizer vocabulary

• Implication: model emits
<END> to signal to stop
generating tokens

tokens = ["hello", "there"]
tokens = [TOKEN_START] + tokens + [TOKEN_END]

Aside: tokenizers and "control characters"

• Other common control tokens:

• <PAD>: if you need to pad your input to a specific seq_len (ex: batching N
input sentences each with different number of tokens), insert <PAD> tokens
(typically right-pad)

• <UNKNOWN>: if an unexpected input comes in (eg text never seen before in
training), then represent it with this

• <CLS>: the classification token we've seen before!

• ...

Demo: huggingface text encoder

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained("bert-base-uncased")
input_text = "I am Eric meow"

Tokenizer
input_tokens = tokenizer(input_text, return_tensors='pt')
print("input_tokens: ", input_tokens)
print("input_tokens.input_ids.shape: ", input_tokens.input_ids.shape)
print("convert_ids_to_tokens: ",
tokenizer.convert_ids_to_tokens(input_tokens.input_ids[0, :]))

output = model(**input_tokens)
print("output shape: ", output.last_hidden_state.shape)

https://huggingface.co/google-bert/bert-base-uncased

input_tokens: {'input_ids': tensor([[101, 1045, 2572, 4388, 2033, 5004, 102]]),
'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1]])}
input_tokens.input_ids.shape: torch.Size([1, 7])
convert_ids_to_tokens: ['[CLS]', 'i', 'am', 'eric', 'me', '##ow', '[SEP]']

output shape: torch.Size([1, 7, 768])

dim_embed: 768

Note: tokenizer can break up a

single word into multiple tokens!

In this implementation, <SEP>

is the "END" token

https://huggingface.co/google-bert/bert-base-uncased

Machine translation setup

• Given a source-language sentence (EN) and a target-language sentence (FR),
how to we set up the training task/loss for the translation task?

• One way: pose it as a "next token prediction" task!

• Notably: inference is done in an iterative auto-regressive manner

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>]

DNN model
Linear,

Softmax
ArgMax

Predicted next token:

"Je"

Iter_0

Note: "Linear, Softmax" produces a probability score vector

over the tokenizer vocabulary size. Ex: Bert tokenizer has

~30k tokens in its vocabulary [link]

ArgMax: aka "Choose token with largest

predicted probability score"

Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token42 ("Je"): 0.9
...

Softmax is

done across the

entire tokenizer

vocabulary (ex:

30k vocab!)

https://huggingface.co/google-bert/bert-base-uncased/blob/main/config.json#L22

Translation as "next token prediction" (inference)
Note: "My name is Eric" -> "Je m'appelle Éric"

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>]

DNN model
Linear,

Softmax
ArgMax

Predicted next token:

"Je"

Iter_0

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_1: [<START>, "Je"]

DNN model
Linear,

Softmax
ArgMax

Predicted next token:

"m'appelle"

Iter_1

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_2: [<START>, "Je", "m'appelle"]

DNN model
Linear,

Softmax
ArgMax

Predicted next token:

"Eric"

Iter_2

Output: [<START>, "Je", "m'appelle", "Eric", <END>]

Source: [<START>,"My", "name", "is", "Eric", <END>]

DNN model
Linear,

Softmax
ArgMax

Predicted next token:

<END>

Iter_3

Target_3: [<START>, "Je", "m'appelle", "Eric"]

Translation loss

• How to build a training loss out of this idea?

• Answer: all-possible next-token prediction tasks (classification loss)!

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>]
DNN model Linear

Target Label: "Je"

Train

Sample

0
SoftmaxLoss

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>, "Je"]
DNN model Linear

Target Label: "suis"

Train

Sample

1
SoftmaxLoss

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>, "Je", "suis", "Eric"]
DNN model Linear

Target Label: <END>

Train

Sample

N
SoftmaxLoss

...

Translation loss: optimization opportunity?

• In practice: for a target sequence with length N, we don't want to have to do N
separate forward passes during training (lots of repeated computation!)

• Is there a way to do a single forward pass passing in the full target sequence
once and getting all N prediction tasks at once?

Source: [<START>,"My", "name", "is", "Eric", <END>]

Target_0: [<START>, "Je", "suis", "Eric", <END>]
DNN model Linear

Target Labels: ["Je", "suis", "Eric", <END>]

Train

Sample
SoftmaxLosses

Con: N separate forward

passes is slow :(

Translation loss: Attempt 1

• Idea: let's connect our Encoder and
Decoder via cross-attention

• Encoder: given source sequence
(EN), generate new source token
embeds

• Decoder: given target sequence
(FR) and Encoder output (EN),
generate new target token embeds

• Use cross-attention to "fuse"
information from source sequence
(EN) with target sequence (FR)

Z is the Encoder

output.

shape=[batchsize,

seq_len_src, d]

Recall: cross-attention

lets us "mix" two input

sequences

Output shape: [bs,

seq_len_tgt, d]

X is our target sentence,

shape=[bs, seq_len_tgt, d]

Decoder output embeds.

Shape=[bs, seq_len_tgt, d]

Target token classifier

loss

Intuition: for each

sequence position

`ind`, predict the

correct output token

Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token42 ("Je"): 0.9
...

ind=0, target label: 42

Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token9001 ("suis"): 0.75
...

ind=1, target label: 9001

Note: omitted in this figure

is the positional

embeddings added to

input X

Translation loss: Attempt 1

• Question: from a modeling
perspective, why might this current
setup be suboptimal?

• Hint: information leakage

• Answer: decoder can "cheat" and use
information from later in the
sequence when predicting the
current token!

• Violates our desire that a prediction
for sequence position `ind` should
only use information before `ind`
("causality")

Z is the Encoder

output.

shape=[batchsize,

seq_len_src, d]

Recall: cross-attention

lets us "mix" two input

sequences

Output shape: [bs,

seq_len_tgt, d]

X is our target sentence,

shape=[bs, seq_len_tgt, d]

Decoder output embeds.

Shape=[bs, seq_len_tgt, d]

Target token classifier

loss

Intuition: for each

sequence position

`ind`, predict the

correct output token

Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token42 ("Je"): 0.9
...

ind=0, target label: 42

Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token9001 ("suis"): 0.75
...

ind=1, target label: 9001

Note: omitted in this figure

is the positional

embeddings added to

input X

Solution: attention scores (no causal mask)

<START> "je" "suis" "Eric"

"Eric"

"je"

"suis"

0.8 0.2 0.1 0.1 0.2
0.0 0.1 0.9 0.3 0.1
0.1 0.2 0.1 0.6 0.1
0.1 0.7 0.2 0.1 0.2
0.0 0.2 0.8 0.0 0.9

<START>

<END>

Issue: when predicting the first token "je", the decoder's

can utilize information from the rest of the sequence.

Solution: apply a "look ahead" mask to the decoder's

self-attention weights

<END>

Solution: attention scores (with causal mask)

<START> "je" "suis" "Eric"

"Eric"

"je"

"suis"

0.8 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.0 0.1 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.1 0.2 0.1 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.1 0.7 0.2 0.1 −𝑖𝑛𝑓
0.0 0.2 0.8 0.0 0.9

<START>

<END>

We apply the "look ahead" mask before the

softmax(), and after the division by 𝑑

<END>

Masked Attention scores (post softmax)

<START> "je" "suis" "Eric"

"Eric"

"je"

"suis"

0.8 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.0 0.1 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.1 0.2 0.1 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0.1 0.7 0.2 0.1 −𝑖𝑛𝑓
0.0 0.2 0.8 0.0 0.9

<START>

<END>

<END> <START> "je" "suis" "Eric"

"Eric"

"je"

"suis"

1.0 0 0 0 0
0.1 0.9 0 0 0
0.1 0.8 0.1 0 0
0.1 0.7 0.2 0.1 0
0.0 0.2 0.3 0.0 0.5

<START>

<END>

<END>

Softmax (along rows)

Note that the Softmax(-Inf) turns into 0.0 probability. Now, the decoder can't "cheat"!

Masked Attention scores (post softmax)

1.0 0 0 0
0.1 0.9 0 0
0.1 0.8 0.1 0
0.1 0.7 0.2 0.1

Exercise: show that the output of Masked attention

leads to the property that, for output token at sequence

position `ind`, H[bs, ind, :] only includes information from

the first `ind` tokens in V.

Aka "masked attention indeed fixes the cheating

problem"

𝑸 = 𝑿𝒕𝒈𝒕𝑾𝒒

𝑲 = 𝑿𝒕𝒈𝒕𝑾𝒌

𝑽 = 𝑿𝒕𝒈𝒕𝑾𝒗

𝑨 = 𝒎𝒂𝒔𝒌_𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑸,𝑲, 𝑽 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝒎𝒂𝒔𝒌(
𝑸𝑲𝑻

𝒅
))

𝑯 = 𝑨𝑽

𝑉00 𝑉01
𝑉10 𝑉11
𝑉20 𝑉21
𝑉30 𝑉31

1.0 ∗ 𝑉00 1.0 ∗ 𝑉01
0.1 ∗ 𝑉00 + 0.9 ∗ 𝑉10 0.1 ∗ 𝑉01 + 0.9 ∗ 𝑉11

0.1 ∗ 𝑉00 + 0.8 ∗ 𝑉10 + 0.1 ∗ 𝑉20 0.1 ∗ 𝑉01 + 0.8 ∗ 𝑉11 + 0.1 ∗ 𝑉21
0.1 ∗ 𝑉00 + 0.7 ∗ 𝑉10 + 0.2 ∗ 𝑉20 + 0.1 ∗ 𝑉30 0.1 ∗ 𝑉01 + 0.7 ∗ 𝑉11 + 0.2 ∗ 𝑉21 + 0.1 ∗ 𝑉31

=

A V H

𝐴00 ∗ 𝑉[0,:]
𝐴10*𝑉[0,:] + 𝐴11*𝑉[1,:]

𝐴20*𝑉[0,:] + 𝐴21*𝑉[1,:] + 𝐴22*𝑉[2,:]
𝐴30*𝑉[0,:] + 𝐴31*𝑉[1,:] + 𝐴32*𝑉[2,:] + 𝐴33*𝑉[3,:]

=

Note that the 1st row of H only depends on the first

row of V, the 2nd row of H only depends on the first

two rows of V, etc.

Thus, we achieved our goal: the H embedding at

sequence position `ind` only relies on tokens V that

precede it (causally).

Aside: Masked attention implementation

Tip: we can implement

`mask_attention()` by adding a simple

mask to the pre-softmax inputs:

𝑸 = 𝑿𝒕𝒈𝒕𝑾𝒒

𝑲 = 𝑿𝒕𝒈𝒕𝑾𝒌

𝑽 = 𝑿𝒕𝒈𝒕𝑾𝒗

𝑨 = 𝒎𝒂𝒔𝒌_𝒂𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏 𝑸,𝑲, 𝑽 = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝒎𝒂𝒔𝒌(
𝑸𝑲𝑻

𝒅
))

𝑯 = 𝑨𝑽

0.9 0.2 0.1 0.1 0.4
0.1 0.2 0.9 0.1 0.1
0.2 0.3 0.2 0.7 0.1
0.2 0.8 0.3 0.2 0.1
0.1 0.3 0.9 0.1 1.0

0 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 −𝑖𝑛𝑓 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 0 −𝑖𝑛𝑓 −𝑖𝑛𝑓
0 0 0 0 −𝑖𝑛𝑓
0 0 0 0 0

+Softmax()

𝑄𝐾𝑇

𝑑

attention_mask

1.0 0 0 0 0
0.1 0.9 0 0 0
0.1 0.8 0.1 0 0
0.1 0.7 0.2 0.1 0
0.0 0.2 0.3 0.0 0.5

=

A

(along rows)

Recall: in Python (and most programming

languages*), `-Inf + <any number> = -Inf`
*This property is defined by the IEEE floating point standard

Translation loss: Attempt 2!

• We've (finally) arrived at a working
Encoder+Decoder implementation
for machine translation!

• Masked MHA: prevent information
leakage ("preserve causality")

• Cross-attention: fuse information
from source (EN) and target (FR)
sequences

• Train task: next-token prediction
task

Z is the Encoder

output.

shape=[batchsize,

seq_len_src, d]

Recall: cross-attention

lets us "mix" two input

sequences

Output shape: [bs,

seq_len_tgt, d]

X is our target sentence,

shape=[bs, seq_len_tgt, d]

Decoder output embeds.

Shape=[bs, seq_len_tgt, d]

Target token classifier

loss

Intuition: for each

sequence position

`ind`, predict the

correct output token

Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token42 ("Je"): 0.9
...

ind=0, target label: 42

Token, predicted_probability
Token0 ("eau"): 0.01
Token1 ("boulangerie"): 0.02
...
Token9001 ("suis"): 0.75
...

ind=1, target label: 9001

Note: omitted in this figure

is the positional

embeddings added to

input X

Masked MHA

prevents decoder

from "cheating"

Translation loss: next token prediction

• For a given source->target
dataset row, we turn this
into multiple prediction
tasks:

Encoder Decoder

I am Eric

target label="Je"

<start> Je suis Eric <end>

Linear

SoftmaxLoss

Shape=[bs, tgt_seq_len,

vocab_size]

...

...

...

...

Seq_ind=0

Seq_ind=1

Seq_ind=2

Seq_ind=3

Vocab size (logits)

SoftmaxLoss

SoftmaxLoss

SoftmaxLoss

target label="suis"

target label="Eric"

target label="<stop>"

Due to masked self

attention in decoder,

these predictions don't

"cheat" and use decoder

inputs

Encoder-Decoder models

• The OG "Attention Is All You Need" paper
[link]

• Tasks

• English->German, English->French
translation

• "English constituency parsing"

• Aka: Parse a sentence into a subject/verb/noun
parse tree

Encoder

Decoder

https://nlpprogress.com/english/constituency_parsing.html

https://arxiv.org/abs/1706.03762
https://nlpprogress.com/english/constituency_parsing.html

Many more fun topics!

• Inference improvements for generative tasks

• Beam search

• Decoder-only architectures

• Ex: OpenAI's GPT models

• More natural language processing (NLP) applications

• Generative text models (aka Chat-GPT)

• Pretraining/training/fine-tuning strategies

• ...if we have time post-midterm, we'll revisit this!

(unused) Aside: Beam search

https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate

	Slide 1: Lecture 14: Transformers (Part 4)
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: DSP: Midterms
	Slide 5: Today's lecture
	Slide 6: (for fun)
	Slide 7: MHA (v1.5): multiple heads + split
	Slide 8: Encoder: Classification?
	Slide 9: Encoder Classification V0: Naive classifier
	Slide 10: Classification approach 1: "CLS" token
	Slide 11: Classification approach 2: Token aggregation
	Slide 12: Decoder
	Slide 13: Cross attention
	Slide 14: Cross attention: seq lengths
	Slide 15: Cross attention: equations ("single head")
	Slide 16: Cross-attention: attention scores
	Slide 17: Masked self attention: motivation
	Slide 18: Aside: tokenizers and "control characters"
	Slide 19: Aside: tokenizers and "control characters"
	Slide 20: Demo: huggingface text encoder
	Slide 21: Machine translation setup
	Slide 22: Translation as "next token prediction" (inference)
	Slide 23: Translation loss
	Slide 24: Translation loss: optimization opportunity?
	Slide 25: Translation loss: Attempt 1
	Slide 26: Translation loss: Attempt 1
	Slide 27: Solution: attention scores (no causal mask)
	Slide 28: Solution: attention scores (with causal mask)
	Slide 29: Masked Attention scores (post softmax)
	Slide 30: Masked Attention scores (post softmax)
	Slide 31: Aside: Masked attention implementation
	Slide 32: Translation loss: Attempt 2!
	Slide 33: Translation loss: next token prediction
	Slide 34: Encoder-Decoder models
	Slide 35: Many more fun topics!
	Slide 36: (unused) Aside: Beam search

