
Speaker: Eric Kim

Lecture 12: Transformers (Part 2)
Data C182 (Fall 2024). Week 07. Tuesday Oct 8th, 2024

1 Rev02: 2024-10-15 12:30 PM PST

Announcements

• HW01 due tonight! Tues Oct 8th 11:59 PM PST

• Reminder: Homework slip day policy [link]

• DSP students: for those with "Assignment extension" accommodation, we have
already extended your due date on Gradescope.

• If you are expecting one, but haven't received the extension, please make a
private Ed post!

• HW02 ("RNNs") out!

• Due: Thurs Oct 24th, 11:59 PM PST

• In Colab (phew!)

2

https://edstem.org/us/courses/64085/discussion/5441827

Announcements

• Reminder: Midterm is coming up!

• Tuesday, October 22th 2024, 6:30 PM - 8 PM.

• Location: ~50% in 10 Evans, ~50% in Physics 1

• We'll send exam room assignments to students shortly

• If you're unable to make this time, please contact us ASAP (make a private Ed
post)

• Midterm will cover everything from:

• Lectures, discussions, HW01+HW02

• In-person, paper + pencil exam.

• DSP: if you need exam accommodations, please contact us ASAP (private post
on Ed)

3

Today's lecture

• Transformers (Part 2!)

• Multi-head self attention (MHA): deep dive

• Encoders

• Text classification, image classification

Problem setup: sequences

• So far: we've mainly focused on "point predictions"

• Ex: given an image, what category is it? (CIFAR-10, from HW01!)

• Many problems are instead naturally described via sequences

• Given a video (a sequence of audio and visual features), what is happening in
the video? (action classification)

• Given an input text sequence:

• Generation: what should I respond with?

• Translation: translate from English to French?

• Classification: does this sentence have positive sentiment?

Attention

• Motivation: given an input X, when producing a prediction/output Y, we want the
model to tell us "why" it returned Y

• "Explainable AI"

• One popular approach: "Attention"

• Design your model such that the model considers certain parts of the input X
more "important" than others

• Frequently visualized in papers as "attention masks"

Motivation / intuition

7

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.

Problem setting:

Image captioning.

Input: image.

Output: text

caption describing

the image.

Observation: model learns to correlate

different regions of the image with being

"relevant" to a given word.

"Attention Is All You Need" (2017)

• Paper that introduced the "Transformers" model
architecture [link]

• Highly influential and impactful

• Ex: powers Chat-GPT!

• Basically, transformers is now ubiquitously
used in AI/ML

• Originally focused on the text domain: machine
translation, and sentence parsing ("English
constituency parsing")

• Now, transformers are used in other domains
like: images, videos, user actions, etc.

https://arxiv.org/abs/1706.03762

Multihead self attention (MHA)

• General idea: MHA layer does two things

• (1) Self-attention. Learn which parts of
the input are important to produce the
desired prediction.

• (2) Attention-aware transformation.
Transform the input features in a way
where the "important" parts are
highlighted (attention) to learn a
stronger representation.

• Notably, MHA is good at capturing
"long range" interactions, something
that RNNs have historically had
difficulty with

https://arxiv.org/abs/2010.11929

https://arxiv.org/abs/2010.11929

MHA (v0)

• Exercise: Let's build up, step-by-step, to the "full" MHA

• Note: to simplify things (somewhat), let's assume we're working with a single input
sequence X, and batchsize=1 (shape=[seq_len, d]).

• Aka we're looking at just the Encoder (more on that soon)

MHA (v0): attention scores

• First up: how do we compute attention scores?

• Question: given an input X with shape=[seq_len,
d], what should the attention scores shape be?

• Answer: [seq_len, seq_len]! Ex:
attn_scores[0, 2] tells me "how important is
token 2 to token 0?"

• Question: suppose I want to make the attention
scores more interpretable (eg as probability
scores), and have the rows of the attention
scores sum to 1.0: attn_scores[0, :].sum() ==
1.0. How can I achieve this?

• Answer: softmax() across each row!

Softmax()

Softmax()

https://theaisummer.com/transformer/

...

https://theaisummer.com/transformer/

MHA (v0): attention scores

• Question: what is the simplest way you can think of
to calculate self-attention? (X shape=[seq_len, d])

• Answer: one way is to multiply all pair-wise dot
products between rows of X:

• attn_scores = softmax(X * X^T, dim=1)

• Pro: simple

• Con: we're not learning anything here. What if X
isn't good at calculating attention scores?

• It's not "deep" enough...

• Let's learn some transformations of X!

Softmax()

Softmax()

https://theaisummer.com/transformer/

...

https://theaisummer.com/transformer/

MHA (v0): Query, Key, Value
Let: X be [seq_len, d]

𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣 are [d, d],

and are learned linear

transforms

Step 1: Calculate Query, Key, and Value:

Step 2: Use Q, K to calculate attention scores:

𝑎𝑡𝑡𝑛_𝑠𝑐𝑜𝑟𝑒𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

𝑑
) shape=[seq_len, seq_len]

softmax is done

over rows Divide by sqrt(d) to avoid issues with

vanishing gradients when d is large

Step 3: Compute final MHA output

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑
𝑉

(1)

(2) (3)

shape=[seq_len, d]

shape=[seq_len, d]

...and repeat! Can

easily stack MHA

layers

MHA (v0): information flow

Attention scores:

[seq_len, seq_len] V: shape=[seq_len, d]

Output: shape=[seq_len, d]

Input X:

shape=[seq_len, d]

Q, K, V:

shape=[seq_len, d]

Intuition: use Q, K to

compute attention scores.

Then, transform X via V

and the attention scores.

Linear Add one more Linear layer for good measure.

Note: this Linear transform is done on each token

independently, eg the Linear.W.shape is [d, d],

NOT [seq_len, d]

MHA (v1): multiple heads

• Idea: let's learn multiple self-attention modules (prev slide) in parallel at a given
level (eg "width" of network)

"single head"

attention

"multi head"

attention

MHA (v1): multiple heads
Let `h` be the number of heads.

(1) Run h different independent self-attention blocks, to

produce h different outputs with shape=[seq_len, d]

(2) Concatenate all h outputs, and apply a learned linear

transformation to produce the MHA output

(shape=[seq_len, d])

h different Q, K, V, and

attention scores!

shape=[seq_len, h*d]
Learned linear

transform.

Shape=[h*d, d]
Nice property: we can easily

stack MHA vertically ("deeper")!
Orig paper uses 6 layers, with

h=8 heads

MHA (v1.5): multiple heads + split
In practice: to reduce computation costs, rather than have

each self-attention module operate on the full embedding

`d`, we divide up the embeddings into `h` chunks.

Example: for d=16 and h=2 heads,

Head0: work on first 8 embed dims: X[:, :8]

Head1: work on last 8 embed dims: X[:, 8:]

shape=[seq_len, h*𝑑ℎ]

=[seq_len, d]

Learned linear

transform.

Shape=[d, d]

𝒅𝒉 = 𝒇𝒍𝒐𝒐𝒓(
𝒅

𝒉
)

"effective" embed

dimensionality for

each head

𝑄ℎ, 𝐾ℎ, 𝑉ℎ
Shape=[seq_len, 𝑑ℎ]

𝑊ℎ
𝑞
,𝑊ℎ

𝑘, 𝑉ℎ
𝑣

Shape=[d, 𝑑ℎ]

𝑋ℎ shape=[seq_len, d]

Implication: with this embedding "splitting", a MHA with h heads

(operating on d//h dims) is roughly the same computation cost as a

MHA with 1 head but operating on the full embedding dimensionality.

Split (d -> 𝑑ℎ)

Neat animation from: https://towardsdatascience.com/illustrated-

guide-to-transformers-step-by-step-explanation-f74876522bc0

Rev02(2024-10-15) This slide originally had a mistake: it stated that we split X into `h` chunks

for MHA. This is not true, we split Q,K,V into `h` chunks: 𝑄ℎ, 𝐾ℎ, 𝑉ℎ

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

MHA: pytorch
import torch
input_seq_len = 8
batchsize = 2
embed_dim = 16
num_heads = 4
print(f"Scenario: input_seq_len={input_seq_len} batchsize={batchsize}
embed_dim={embed_dim} num_heads={num_heads}")

https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
mha = torch.nn.MultiheadAttention(

embed_dim=embed_dim,
num_heads=num_heads,
batch_first=True,

)

input_seq = torch.rand(size=[batchsize, input_seq_len, embed_dim],
dtype=torch.float32)
print(f"input_seq.shape: {input_seq.shape}")

out_mha, attn_weights = mha(query=input_seq, key=input_seq, value=input_seq,
need_weights=True)

print(f"out_mha.shape: {out_mha.shape}, attn_weights.shape:
{attn_weights.shape}")
out_proj_layer = mha.out_proj
print(f"out_proj_layer.weight.shape: {out_proj_layer.weight.shape}")

Output
Scenario: input_seq_len=8 batchsize=2
embed_dim=16 num_heads=4
input_seq.shape: torch.Size([2, 8, 16])
out_mha.shape: torch.Size([2, 8, 16]),
attn_weights.shape: torch.Size([2, 8, 8])
out_proj_layer.weight.shape: torch.Size([16, 16])

Transformers: ordered sequences

• Recall: in RNNs, we iteratively feed each input
token to the model one at a time

• Thus, token order information can be
preserved, eg through the hidden state

• However: so far (as we've covered it), the MHA
block ignores token ordering!

• Ex: {"I", "am", "happy"} looks the same as
{"am", "I", "happy"}.

• Aka a "set" embedding, rather than a "sequence"
embedding. Which is valuable in some scenarios, but not
here.

• When token order matters, this is concerning
from a modeling standpoint...

Positional encodings

• The transformers solution: positional encodings

• Idea: at the beginning of the transformer
model, element-wise add a positional
embedding (with the same dimensionality as
the input X) to each token embedding before
the first MHA block

• Requirement: Positional embedding must
encode the "token position"

Element-wise

addition

Positional encodings

• Positional embedding can either be learned (eg a
torch.nn.Embedding bank), or hardcoded in a "special way"

• Orig. paper used a sin/cos formula as the positional
embedding

For more details/intuition on sin/cos, see: [link]

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Where:

pos: sequence index

i: embedding dim index

Let X be input seq (shape=[seq_len, d])
X_with_pos = torch.zeros(X.shape)
X_with_pos[0, 0] = X[0,0] + sin(0 / (10000 ** (2*0 / d)))
X_with_pos[0, 1] = X[0,1] + cos(0 / (10000 ** (2*1 / d)))
X_with_pos[0, 2] = X[0,2] + sin(0 / (10000 ** (2*2 / d)))
...
X_with_pos[1, 0] = X[1,0] + sin(1 / (10000 ** (2*0 / d)))
X_with_pos[1, 1] = X[1,1] + cos(1 / (10000 ** (2*1 / d)))
X_with_pos[1, 2] = X[1,2] + sin(1 / (10000 ** (2*2 / d)))
...

Alternate sin/cos

along embed dim

Positional embedding can either be learned (eg a torch.nn.Embedding bank), or computed from a formula
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Transformer: encoder and decoder

• The transformers paper originally
discussed two components: an Encoder,
and a Decoder

• Encoder: given an input sequence X,
generate "good" token embeddings

• Decoder: given an input sequence X,
generate output tokens Y

• First, let's focus on Encoders (it's
conceptually simpler)

Encoder

Decoder

Encoder

• Input: X with shape=[bs, seq_len, dim]

• Output: X' with shape=[bs, seq_len, dim]

• Idea: learn a representation of the input
sequence that is good for downstream
tasks (eg classification, text generation,
etc) Encoder

block

Classification

head

Task

head(s)
(eg: classification,

detection, regression,

etc)

Output Token

EmbedsNew learned

representation

Aside: NN "blocks"

• It's common to define a DNN in terms of "blocks",
rather than individual layers

• Ex: a "ResNet Bottleneck Block" [link] consists of:

Conv2d

Input feat map

BatchNorm, Relu

Conv2d

BatchNorm, Relu

Conv2d

BatchNorm

+

Relu

"Bottleneck"

block

Output feat map
Bottleneck

block (3x)

Bottleneck

block (4x)

Bottleneck

block (6x)
Bottleneck

block (3x)

Class

ifier

"Dog"

(0.94)

If you're curious here is pytorch's (torchvision) implementation of

ResNet50 (in all of its gory detail): [link]

Tip: you should be able to read this code and understand 90% of what's

going on! The implementation is complicated because it's super

generic+flexible, but with some study you can see what's going on :)

* Some things missing from this resnet50 picture: initial

"stem", downsampling (spatial resolution) layers, other

minor details

ResNet50 (Image classification

arch [link]) is then built by

repeating the "Bottleneck

block" a bunch of times

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L108
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L736
https://arxiv.org/abs/1512.03385

Encoder block

Residual/skip

connection

Linear(in=dim_embed,

out=dim_ff=2048)

Source:

[TransformerEncoderLayer._ff_block(

)]

Linear

LayerNorm,

Dropout

Linear

Dropout

Input X

Output

Linear(in=dim_ff=2048,

out=dim_embed)

Source:

[TransformerEncoderLayer.forward()]

https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L930
https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L930
https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L897

Encoder Arch

TransformerEncoder

pytorch code: [link]

Encoder block

repeated N=6

times

Input sequence X

...repeat...

Encoder

blocks

Classification

head

Task

head(s)
(eg: classification,

detection, regression,

etc)

Output Token

EmbedsNew learned

representation

Output Token

Embeds

Encoder

(drawn another way,

eg from the original

Transformers paper)

https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L309

Detail: Pre-norm vs Post-norm

• Original transformers paper did "Post-
LayerNorm" (Post-LN)

• But, smart people found out that "Pre-
LayerNorm" (Pre-LN) works better

• Better training stability, can use larger
learning rate, etc

• For more details, see: [link]

(Left) Original version. (Right)

"Improved" version

https://arxiv.org/pdf/2002.04745v1

Application: text classification (Bert)

• BERT ("Bidirectional Encoder
Representations from
Transformers"): [link]

• Perform text sentence
classification using a Transformer
Encoder + pretraining/finetuning

• Key idea: prepend a "CLS" token
to the start of every sequence.
Then, train a classifier on top of
this CLS token embedding

• Intuition: CLS token stores the
"global" info about the sentence

"CLS" token: stores global info

Classifier

"Label"

https://arxiv.org/abs/1810.04805

Application: image classification (ViT)

• "An Image is Worth 16x16
Words: Transformers for
Image Recognition at Scale"
[link]

• Image classification with
Transformer Encoder

• Idea: represent an image as a
sequence of image patches!

Fun fact: this "linear projection of flattened

patches" is basically a Conv2d, which people

laughed about for awhile...

https://arxiv.org/abs/2010.11929

	Slide 1: Lecture 12: Transformers (Part 2)
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: Today's lecture
	Slide 5: Problem setup: sequences
	Slide 6: Attention
	Slide 7: Motivation / intuition
	Slide 8: "Attention Is All You Need" (2017)
	Slide 9: Multihead self attention (MHA)
	Slide 10: MHA (v0)
	Slide 11: MHA (v0): attention scores
	Slide 12: MHA (v0): attention scores
	Slide 13: MHA (v0): Query, Key, Value
	Slide 14: MHA (v0): information flow
	Slide 15: MHA (v1): multiple heads
	Slide 16: MHA (v1): multiple heads
	Slide 17: MHA (v1.5): multiple heads + split
	Slide 18: MHA: pytorch
	Slide 19: Transformers: ordered sequences
	Slide 20: Positional encodings
	Slide 21: Positional encodings
	Slide 22: Transformer: encoder and decoder
	Slide 23: Encoder
	Slide 24: Aside: NN "blocks"
	Slide 25: Encoder block
	Slide 26: Encoder Arch
	Slide 27: Detail: Pre-norm vs Post-norm
	Slide 28: Application: text classification (Bert)
	Slide 29: Application: image classification (ViT)

