| ecture 12: Transformers (Part 2)

Data C182 (Fall 2024). Week O7. Tuesday Oct 8th, 2024

Speaker: Eric Kim



Announcements

- HWO1 due tonight! Tues Oct 8th 11:59 PM PST
- Reminder: Homework slip day policy [link]

- DSP students: for those with "Assignment extension” accommodation, we have
already extended your due date on Gradescope.

- |f you are expecting one, but haven't received the extension, please make a
private Ed post!

- HWO2 ("RNNs") out!
 Due: Thurs Oct 24th, 11:59 PM PST

- |n Colab (phew!)


https://edstem.org/us/courses/64085/discussion/5441827

Announcements

- Reminder: Midterm is coming up!
» Tuesday, October 22th 2024, 6:30 PM - 8 PM.
. Location: ~50% in 10 Evans, ~50% in Physics 1

- We'll send exam room assignments to students shortly

- |t you're unable to make this time, please contact us ASAP (make a private Ed
pOSt)

-  Midterm will cover everything from:
- Lectures, discussions, HW0O1+HWO0Z2

- In-person, paper + pencil exam.

- DSP: if you need exam accommodations, please contact us ASAP (private post
on Ed)
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Today's lecture

- Transformers (Part 2!)
- Multi-head self attention (MHA): deep dive
- Encoders

- Text classification, image classification



Problem setup: sequences

- S0 far: we've mainly focused on "point predictions”
- EX: given an image, what category is it? (CIFAR-10, from HWO1!)
- Many problems are instead naturally described via sequences

- (Glven a video (a sequence of audio and visual features), what is happening in
the video? (action classification)

- (Glven an input text sequence:
- (Generation: what should | respond with?
- Translation: translate from English to French?

- Classification: does this sentence have positive sentiment?



Attention

- Motivation: given an input X, when producing a prediction/output Y, we want the
model to tell us "why" it returned Y

- "Explainable Al”
- One popular approach: "Attention”

- Design your model such that the model considers certain parts of the input X
more "Important” than others

- Frequently visualized in papers as "attention masks"”



Motivation /intultion iz

"relevant” to a given word.
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Problem setting.
Image captioning.
Input: image.
Output: text
caption describing

the image. W s

A stop sign is on a road with a
mountain in the background.
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A giraffe standing in a forest with
trees in the background.

, “

A little girl sitting on a bed with A group of people sitting on a boat
a teddy bear. in the water.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.



"Attention Is All You Need" (2017)

. I I Qutpu
. Paper that introduced the "Transformers" model Probabies
architecture [link] Softrey
- Highly influential and impactful (™
‘ Ft:fj;d
- EXx: powers Chat-GPT! — | —I—
| | o (~Emn) || e
- Basically, transformers is now ubiquitously | e e | v
Used |n A‘/ML N Addjl\] Add&INnrm 4—-:
L , Multi-Head Mwlﬁeeid
» Originally focused on the text domain: machine LertionJ| | [_Aenion.
translation, and sentence parsing ("English /A -
. Pr::::sm:mlnal A ¢ F’oaﬁlgnal
Constltuency parsing") Encoding ®_OI 1 T Eodng
Embedding Embedding
- Now, transformers are used In other domains T T
. . . . INputs Qutputs
like: images, videos, user actions, etc. ’ shifed right

Figure 1: The Transformer - model architecture.


https://arxiv.org/abs/1706.03762

Multihead selt attention (MHA)

- General idea: MHA layer does two things

. (1) Self-attention. Learn which parts of

Input Attention

the input are important to produce the
desired prediction. —

- (2) Attention-aware transformation.
Transform the input" eatures N a way
where the "Import
highlighted (atter

ant" parts are
tion) to learn a

stronger representation.

Figure 6: Representative ex-

- Notably, MHA Is good at capturing amples of attention from the

"long range” interactions, something

tr

4

fficulty with

output token to the input
space. See Appendix D.7 for

at RNNs have historically hao details.

https://arxiv.org/abs/2010.11929



https://arxiv.org/abs/2010.11929

MHA (vO)

- EXxercise: Let's build up, step-by-step, to the "full® MHA

- Note: to simplify things (somewhat), let's assume we're working with a single input
sequence X, and batchsize=1 (shape=[seq_len, d]).

- Aka we're looking at just the Encoder (more on that soon)



MHA (vO): attention scores

- First up: how do we compute attention scores?

- Question: given an input X with shape=[seq_len,
d], what should the attention scores shape be?

- Answer: [seq_len, seq_len]! Ex:
attn_scores|0, 2] tells me

token 2 to token 07"

+ Question: suppose | want to make the at
scores more interpretable (eg as probabi

"now Important is

‘ention
ity

scores), and have the rows of the attention

scores sum to 1.0: attn_scores|0,
1.0. How can | achieve this?

- Answer: softmax() across each row!
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https://theaisummer.com/transformer/

MHA (vO): attention scores

. Question: what is the simplest way you can think of
to calculate self-attention? (X shape=[seq_len, d])

- Answer: one way Iis to multiply all pair-wise dot
products between rows of X:

- attn_scores = softmax(X * X T, dim=1)
- Pro: simple

- Con: we're not learning anything here. What if X
isn't good at calculating attention scores?

- It's not "deep” enough...

« Let's learn some transformations of X!
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https://theaisummer.com/transformer/

MHA (vO): Query, Key, Value

wW (@)

D x D

D x D

N x D

QK"

Let: X be [seq_len, d] (1)
X
Step 1: Calculate Query, Key, and Value:
= XWW
Q ' wa,wk wv are [d, d], —
shape=[seq_len, d] K = XWk and are learned linear
V = XW) transforms
N x D "
Step 2: Use Q, K to calculate attention scores:
QK"
attn_scores = softmax( ) shape=[seq_len, seq_len]
/ \/E
softmax is done o \ o |
over rows Divide by sqrt(d) to avoid issues with
vanishing gradients when d is large =
Step 3: Compute final MHA output B o
QK" ...and repeat! Can
- r= SOfthlX( JVd v easily stack MHA N x D

shape=[seq_len, d] layers

N x N

(2)

N x D

N x D,

(3)

N x N




MHA (vO): iInformation flow

Output: shape=[seq len, d]

=
Linear

=
Y
l mat mul l

Attention scores: N
[seq_len, seq _len]
[ softmax
A

scale

Q, K, V.
shape=[seq len, d]

Input X: X
shape=[seq len, d]

\ Add one more Linear layer for good measure.
Note: this Linear transform is done on each token
Independently, eg the Linear.W.shape is [d, d],
NOT [seq_len, d]

V: shape=[seq_len, d]

Intuition: use Q, K to
compute attention scores.
Then, transform X via V
and the attention scores.



MHA (v1): multiple heads

- |dea: let's learn multiple self-attention modules (prev slide) in parallel at a given
level (eg "width" of network)
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[ mat mul ]
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*
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+
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MHA (v1): multiple heads

Let h be the number of heads.
(1) Run h different independent self-attention blocks, to

X = Y
produce h different outputs with shape=[seq len, d]
(2) Concatenate all h outputs, and apply a learned linear
transformation to produce the MHA output
(shape=[seq len, dJ) N x D
Qh - XW})Q) Y
K, = XW _ T
_ hdifferent Q, K, V, and [ tinear ]
Vi = XWW attention scores! }
) h \ l-{ concat J<
Hy = AttelltiOIl(Qh, Kn, Vi) _ \ T
[ self-attention ] [ self-attention ] [ self-attention ]
Y (X) = Concat [Hy,..., Hy| W t 14 i_I_t_T i 19
| )T
f : X
shape=[seq len. h*d] Learned linear
- ransiorm. NiCe property: we can eaSin Orig paper uses 6 layers, with

Shape=[h*d, d |
ape=| ] stack MHA vertically ("deeper")! =8 heads



Neat animation from: https://towardsdatascience.com/illustrated-

quide-to-transformers-step-by-step-explanation-f74876522bc0

MHA (v1.5): multiple heads + split

In practice: to reduce computation costs, rather than have

each self-attention module operate on the full embedding - TP
‘d’, we divide up the embeddings into h chunks.

.--"'_"'H d ]\H\‘“‘“—'ﬂ-—, ,,-"'"_"Hr /’TR h""'—'--n.h

Example: for d=16 and h=2 heads

HeadO: work on first 8 embed dimé: X[:, 18] BHQE EEHQ HHQE Hﬁﬁﬁ HHEH ﬁﬁﬁﬁ

Headl: work on last 8 embed dims: X|:, 8:] query value query  key value

Xy, shape=[seq_len, d] d
Qh — XW,(I(I) Qh: Kh'Vh dh o floor(ﬁ) Splitting Q, K, V, N times before applying self-attention

Shape=[seq_len, d;]

K, =XWP" i ‘effective’ embed f Split (d -> d,)
¥ W, Wik, vy dimensionality for
o Xwgl\ ) o o E E E E E E E E E E E E
Hj = AttelltiOIl(Qh,, K. Vh)
query key value
Y(X) — Cloncat [Hl HH] W(o) Implication: with this embedding "splitting"”, a MHA with h heads
\ | s L~ (operating on d//h dims) is roughly the same computation cost as a
! Learned linear MHA with 1 head but operating on the full embedding dimensionality.
shape=[seq_len, h*d;] transform.
=[seq_len, d] Shape=[d, d] Rev02(2024-10-15) This slide originally had a mistake: it stated that we split X into “h* chunks

for MHA. This is not true, we split Q,K,V into "h™ chunks: @, K3, V3,


https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0

MHA: pytorch

import torch

input_seq len = 8

batchsize = 2

embed dim = 16

num_heads = 4

print(f"Scenario: input _seq_len={input_seq len} batchsize={batchsize}
embed dim={embed dim} num heads={num_heads}")

# https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
mha = torch.nn.MultiheadAttention(

embed dim=embed dim,

num_heads=num_heads,

batch_first=True,

)

input _seq = torch.rand(size=[batchsize, input seq len, embed dim],
dtype=torch.float32)
print(f"input seq.shape: {input_seq.shape}")

out _mha, attn weights = mha(query=input _seq, key=input seq, value=input_seq,
need weights=True)

print(f"out mha.shape: {out mha.shape}, attn weights.shape:
{attn_weights.shape}")

out_proj _layer = mha.out proj

print(f"out proj layer.weight.shape: {out proj layer.weight.shape}")

# Output

Scenario: input seq len=8 batchsize=2

embed dim=16 num heads=4

input seqg.shape: torch.Size([2, 8, 16])

out mha.shape: torch.Size([2, 8, 16]),

attn weights.shape: torch.Size([2, 8, 8])

out proj layer.weight.shape: torch.Size([16, 16])



Transformers: ordered sequences

- Recall: In RNNs, we iteratively feed each input Output

token to the model one at a time
Hidden

- Thus, token order information can be state
preserved, eg through the hidden state

Input

- However: so far (as we've covered it), the MHA
block ignores token ordering!

- Ex:{"", "am", "nappy"} looks the same as
{!Iamll, |||||, ||I,,appy|l}.

- Aka a "set" embedding, rather than a "sequence’
embedding. Which Is valuable in some scenarios, but not

here.

- When token order matters, this is concerning
from a modeling standpoint...




Positional encodings

Feed
- The transformers solution: positional encodings Forward
- Idea: at the beginning of the transformer
model, element-wise add a positional Vit Head
embedd ng (with the same dimensionality as
the input X) to each token embedding before
the fl rSt \AHA b‘OCk l » EEEQEEZI ‘ %E'egjzﬂfoﬁ'se
- Requirement: Positional embedding must
encode the "token position’ Embedding

I

INputs



Positional encodings

- Positional embedding can either be learned (eg a

torch.nn.Embedding bank), or hardcoded in a "special way"

- Orig. paper used a sin/cos formula as the positional

embedding

PE(pos,2i) = sin(pos/ 10000?%/ dmodel )
PE(pos,2i+1) = cos(pos/ 10000??/ dmode)

# Let X be input seq (shape=[seq len, d])

X with pos = torch.zeros(X.shape)

X with pos[0, @] = X[0,0] + sin(©@ / (10000 **
X with pos[0, 1] = X[0,1] + cos(© / (10000 **
X with pos[0, 2] = X[0,2] + sin(© / (10000 **
X with pos[1, @] = X[1,0] + sin(1 / (10000 **
X with pos[1, 1] = X[1,1] + cos(1 / (10000 **
X with pos[1, 2] = X[1,2] + sin(1 / (10000 **

Where:

POS: seguence index
I embedding dim index

(2*0 /
(2*1
(2*2

~ N

(2*0 /
(2*1
(2*2

~ N

d)))
d)))

Alternate sin/cos
- along embed dim

d)))

d)))
d)))
d)))

Pr—

-

\
~>| Add & Norm }

Feed
Forward

—k
Nx | —{Add & Norm )

Multi-Head
Attention

—t

‘._
\

Positional @_@
Encoding

Input
Embedding

Inputs

For more details/intuition on sin/cos, see: [link]

https://kazemnejad.com/blog/transformer architecture positional encoding/



Positional embedding can either be learned (eg a torch.nn.Embedding bank), or computed from a formula
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Transformer: encoder and decoder

- The transformers paper originally
discussed two components: an Encoder, =)
and a Decoder - .

- Encoder: given an input sequence X, ==
generate "good" token embeddings =qll|EE

. . Encoder | .. | —l i)

- Decoder: given an input sequence X, _ e | | [ e
generate output tokens Y ) =

cooang (O 5~ troo

- First, let's focus on Encoders (it's [ &®
conceptually simpler) T

(shifted right)

Figure 1: The Transformer - model architecture.

— Decoder




Encoder

- |nput: X with shape=|bs, seq_len, dim]
- Output: X" with shape=[bs, seqg_len, dim]

- |dea: learn a representation of the input
sequence that is good for downstream
tasks (eg classification, text generation,
etc)

Task

head(s) <’

(eg: classification,
detection, regression,
etc)

\

Classification
head

L

Output Token
New learned — Embeds

representation

Encoder
block

—

N x

Add & Norm
Multi-Head
Attention

1

Pmsmﬂnal

Encc}dmg b

Input
Embedding

INputs




Aside: NN "blocks"

« [t's common to define a DNN In terms of "blocks",

rather than individual layers

- EX: a "ResNet Bottleneck Block" [link] consists of:

ResNet50 (Image classification

arch

link

) IS then built by

repeating the "Bottleneck
block" a bunch of times

* Some things missing from this resnet50 picture: initial
"stem", downsampling (spatial resolution) layers, other

Bottleneck
block (3x)

Bottleneck
block (4x)

minor details

Bottleneck
block (6x)

"Bottleneck"
block

Bottleneck
block (3x)

Class
Ifier

Input feat map

.
Conv2ad

BatchNorm, Relu

Conv2ad

BatchNorm, Relu

Conv2ad

BatchNorm

. Output feat map

If you're curious here is pytorch's (torchvision) implementation of
ResNet50 (in all of its gory detail): [link]
Tip: you should be able to read this code and understand 90% of what's
going on! The implementation is complicated because it's super
generictflexible, but with some study you can see what's going on :)


https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L108
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L736
https://arxiv.org/abs/1512.03385

Encoder block

Input X

!
Source: : .. Linear(in=dim_embed,
[TransformerEncoderLayer.forward()] xl + 1 L I n e ar out=di m_ff:2048)

T LayerNorm,
Layer Norm ‘ Dropout

t ¥ ) | Linear(in=dim_ff=2048,
addition Inear out=dim_embed)

‘ v
Dropout
L FFN l
Source:
/ OUtDUt [TransformerEncoderLayer. ff block(
)]

Layer Norm |

T immmmmmmmmmmm}mmmmmmmmm?

Multi-Head / [ self-attention ] [ self-a;emic;n ] ‘ s:i—at;ention \

Attention - T '

Residual/skip / S N N i _!
connection x,f’f;' | |
X - :
(a) &%ﬂgiﬁgﬁ

__________________


https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L930
https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L930
https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L897

Encoder Arch

Encoder

Encoder block
repeated N=6
times

TransformerEncoder
pytorch code: [link]

Output Token
Embeds

Input sequence X

(drawn another way,
eg from the original
Transformers paper)

Task

head(s) <’

(eg: classification,
detection, regression,
etc)

New learned —

representation

Encoder
blocks

Classification
head

Output Token

Embeds

- Add & Norm |
Feed
Forward

. Add & Norm |

Multi-Head
Attention

Input
Embedding

INputs

N x

Positional
Encoding

@



https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L309

Detall: Pre-norm vs Post-norm

Original transformers paper did "Post- Layer}mm T {
LayerNorm" (Post-LN) ) -
:
But, smart people found out that "Pre- 0 S
LayerNorm" (Pre-LN) works better i / /
» Better training stability, can use larger T,_\ | \
learning rate, etc 1
. For more details, see: [link] r o

(a) (b)

Figure 1. (a) Post-LN Transformer layer; (b) Pre-LN Transtformer
layer.

(Left) Original version. (Right)
"Improved" version


https://arxiv.org/pdf/2002.04745v1

Application: text classification (Bert)

- BERT ("Bidirectional Encoder

Representations from
Transformers"): [link

- Perform text sentence
classification using a Transformer
Encoder + pretraining/finetuning

. Key Idea:

orepend a "CLS" token

to the start of every sequence.

Then, tral
this CLS

« |Intuition: CLS token stores the

n a classifier on top of

token embedding

"global” info about the sentence

"Label"

*

Classifier

* "CLS" token: stores global info
cl
Label

o)) Gl

Sentence 1 Sentence 2

(@) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Class
Label

) -
BERT

E[CLE] E, E, EN

[CLS] Tok 1 Tok 2 Tok N

Single Sentence

(b) Single Sentence Classification Tasks:
SST-2, ColLA


https://arxiv.org/abs/1810.04805

Application: image classification (ViT)

- "An Image is Worth 16x16
Words: Transformers for

lmage Recognition at Scale”
link |

- Image classification with
Transformer Encoder

- |dea: represent an image as a
sequence of image patches!

Vision Transformer (ViT) I Transformer Encoder
/\ I 1
Class .
Bird MLP ] : @
Ball
Car ‘ Head I MLP
NP |
l
Transformer Encoder \ Nolrm ) |
I :
1
Patch + Positio i-
Embddg +‘é4‘® | hﬁtgﬂl;gid
[class] embeddin ng [ Lmear PrOJectlon of Flattened Patches I A A A
I 1
| | | [ Norm ]
‘\ . ! | "l I J
l
I

Embedded
Patches

Fun fact: this "linear projection of flattened
patches" is basically a Conv2d, which people
laughed about for awnhile...


https://arxiv.org/abs/2010.11929
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