
Speaker: Eric Kim

Lecture 12: Transformers (Part 2)
Data C182 (Fall 2024). Week 07. Tuesday Oct 8th, 2024

1 Rev02: 2024-10-15 12:30 PM PST



Announcements

• HW01 due tonight! Tues Oct 8th 11:59 PM PST

• Reminder: Homework slip day policy [link]

• DSP students: for those with "Assignment extension" accommodation, we have 
already extended your due date on Gradescope.

• If you are expecting one, but haven't received the extension, please make a 
private Ed post!

• HW02 ("RNNs") out!

• Due: Thurs Oct 24th, 11:59 PM PST

• In Colab (phew!)

2

https://edstem.org/us/courses/64085/discussion/5441827


Announcements

• Reminder: Midterm is coming up!

• Tuesday, October 22th 2024, 6:30 PM - 8 PM.

• Location: ~50% in 10 Evans, ~50% in Physics 1

• We'll send exam room assignments to students shortly

• If you're unable to make this time, please contact us ASAP (make a private Ed 
post)

• Midterm will cover everything from:

• Lectures, discussions, HW01+HW02

• In-person, paper + pencil exam. 

• DSP: if you need exam accommodations, please contact us ASAP (private post 
on Ed)
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Today's lecture

• Transformers (Part 2!)

• Multi-head self attention (MHA): deep dive

• Encoders

• Text classification, image classification



Problem setup: sequences

• So far: we've mainly focused on "point predictions"

• Ex: given an image, what category is it? (CIFAR-10, from HW01!)

• Many problems are instead naturally described via sequences

• Given a video (a sequence of audio and visual features), what is happening in 
the video? (action classification)

• Given an input text sequence:

• Generation: what should I respond with?

• Translation: translate from English to French?

• Classification: does this sentence have positive sentiment?



Attention

• Motivation: given an input X, when producing a prediction/output Y, we want the 
model to tell us "why" it returned Y

• "Explainable AI"

• One popular approach: "Attention"

• Design your model such that the model considers certain parts of the input X 
more "important" than others

• Frequently visualized in papers as "attention masks"



Motivation / intuition
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Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”. ICML 2015.

Problem setting: 

Image captioning. 

Input: image.

Output: text 

caption describing 

the image.

Observation: model learns to correlate 

different regions of the image with being 

"relevant" to a given word.



"Attention Is All You Need" (2017)

• Paper that introduced the "Transformers" model 
architecture [link]

• Highly influential and impactful

• Ex: powers Chat-GPT!

• Basically, transformers is now ubiquitously 
used in AI/ML

• Originally focused on the text domain: machine 
translation, and sentence parsing ("English 
constituency parsing")

• Now, transformers are used in other domains 
like: images, videos, user actions, etc.

https://arxiv.org/abs/1706.03762


Multihead self attention (MHA)

• General idea: MHA layer does two things

• (1) Self-attention. Learn which parts of 
the input are important to produce the 
desired prediction.

• (2) Attention-aware transformation. 
Transform the input features in a way 
where the "important" parts are 
highlighted (attention) to learn a 
stronger representation.

• Notably, MHA is good at capturing 
"long range" interactions, something 
that RNNs have historically had 
difficulty with

https://arxiv.org/abs/2010.11929

https://arxiv.org/abs/2010.11929


MHA (v0)

• Exercise: Let's build up, step-by-step, to the "full" MHA

• Note: to simplify things (somewhat), let's assume we're working with a single input 
sequence X, and batchsize=1 (shape=[seq_len, d]).

• Aka we're looking at just the Encoder (more on that soon)



MHA (v0): attention scores

• First up: how do we compute attention scores?

• Question: given an input X with shape=[seq_len, 
d], what should the attention scores shape be?

• Answer: [seq_len, seq_len]! Ex: 
attn_scores[0, 2] tells me "how important is 
token 2 to token 0?"

• Question: suppose I want to make the attention 
scores more interpretable (eg as probability 
scores), and have the rows of the attention 
scores sum to 1.0: attn_scores[0, :].sum() == 
1.0. How can I achieve this?

• Answer: softmax() across each row!

Softmax()

Softmax()

https://theaisummer.com/transformer/

...

https://theaisummer.com/transformer/


MHA (v0): attention scores

• Question: what is the simplest way you can think of 
to calculate self-attention? (X shape=[seq_len, d])

• Answer: one way is to multiply all pair-wise dot 
products between rows of X:

• attn_scores = softmax(X * X^T, dim=1)

• Pro: simple

• Con: we're not learning anything here. What if X 
isn't good at calculating attention scores?

• It's not "deep" enough...

• Let's learn some transformations of X!

Softmax()

Softmax()

https://theaisummer.com/transformer/

...

https://theaisummer.com/transformer/


MHA (v0): Query, Key, Value
Let: X be [seq_len, d]

𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣 are [d, d], 

and are learned linear 

transforms

Step 1: Calculate Query, Key, and Value:

Step 2: Use Q, K to calculate attention scores:

𝑎𝑡𝑡𝑛_𝑠𝑐𝑜𝑟𝑒𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

𝑑
) shape=[seq_len, seq_len]

softmax is done 

over rows Divide by sqrt(d) to avoid issues with 

vanishing gradients when d is large

Step 3: Compute final MHA output

𝑌 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑
𝑉

(1)

(2) (3)

shape=[seq_len, d]

shape=[seq_len, d]

...and repeat! Can 

easily stack MHA 

layers



MHA (v0): information flow

Attention scores: 

[seq_len, seq_len] V: shape=[seq_len, d]

Output: shape=[seq_len, d]

Input X: 

shape=[seq_len, d]

Q, K, V: 

shape=[seq_len, d]

Intuition: use Q, K to 

compute attention scores. 

Then, transform X via V 

and the attention scores.

Linear Add one more Linear layer for good measure. 

Note: this Linear transform is done on each token 

independently, eg the Linear.W.shape is [d, d], 

NOT [seq_len, d]



MHA (v1): multiple heads

• Idea: let's learn multiple self-attention modules (prev slide) in parallel at a given 
level (eg "width" of network)

"single head" 

attention

"multi head" 

attention



MHA (v1): multiple heads
Let `h` be the number of heads.

(1) Run h different independent self-attention blocks, to 

produce h different outputs with shape=[seq_len, d]

(2) Concatenate all h outputs, and apply a learned linear 

transformation to produce the MHA output 

(shape=[seq_len, d])

h different Q, K, V, and 

attention scores!

shape=[seq_len, h*d]
Learned linear 

transform. 

Shape=[h*d, d]
Nice property: we can easily 

stack MHA vertically ("deeper")!
Orig paper uses 6 layers, with 

h=8 heads



MHA (v1.5): multiple heads + split
In practice: to reduce computation costs, rather than have 

each self-attention module operate on the full embedding 

`d`, we divide up the embeddings into `h` chunks.

Example: for d=16 and h=2 heads,

Head0: work on first 8 embed dims: X[:, :8]

Head1: work on last 8 embed dims: X[:, 8:]

shape=[seq_len, h*𝑑ℎ] 

=[seq_len, d]

Learned linear 

transform. 

Shape=[d, d]

𝒅𝒉 = 𝒇𝒍𝒐𝒐𝒓(
𝒅

𝒉
)

"effective" embed 

dimensionality for 

each head

𝑄ℎ, 𝐾ℎ, 𝑉ℎ
Shape=[seq_len, 𝑑ℎ]

𝑊ℎ
𝑞
,𝑊ℎ

𝑘, 𝑉ℎ
𝑣

Shape=[d, 𝑑ℎ]

𝑋ℎ shape=[seq_len, d]

Implication: with this embedding "splitting", a MHA with h heads 

(operating on d//h dims) is roughly the same computation cost as a

MHA with 1 head but operating on the full embedding dimensionality.

Split (d -> 𝑑ℎ)

Neat animation from: https://towardsdatascience.com/illustrated-

guide-to-transformers-step-by-step-explanation-f74876522bc0

Rev02(2024-10-15) This slide originally had a mistake: it stated that we split X into `h` chunks 

for MHA. This is not true, we split Q,K,V into `h` chunks: 𝑄ℎ, 𝐾ℎ, 𝑉ℎ

https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0


MHA: pytorch
import torch
input_seq_len = 8
batchsize = 2
embed_dim = 16
num_heads = 4
print(f"Scenario: input_seq_len={input_seq_len} batchsize={batchsize}
embed_dim={embed_dim} num_heads={num_heads}")

# https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
mha = torch.nn.MultiheadAttention(

embed_dim=embed_dim,
num_heads=num_heads,
batch_first=True,

)

input_seq = torch.rand(size=[batchsize, input_seq_len, embed_dim], 
dtype=torch.float32)
print(f"input_seq.shape: {input_seq.shape}")

out_mha, attn_weights = mha(query=input_seq, key=input_seq, value=input_seq, 
need_weights=True)

print(f"out_mha.shape: {out_mha.shape}, attn_weights.shape: 
{attn_weights.shape}")
out_proj_layer = mha.out_proj
print(f"out_proj_layer.weight.shape: {out_proj_layer.weight.shape}")

# Output
Scenario: input_seq_len=8 batchsize=2 
embed_dim=16 num_heads=4
input_seq.shape: torch.Size([2, 8, 16])
out_mha.shape: torch.Size([2, 8, 16]), 
attn_weights.shape: torch.Size([2, 8, 8])
out_proj_layer.weight.shape: torch.Size([16, 16])



Transformers: ordered sequences

• Recall: in RNNs, we iteratively feed each input 
token to the model one at a time

• Thus, token order information can be 
preserved, eg through the hidden state

• However: so far (as we've covered it), the MHA 
block ignores token ordering!

• Ex: {"I", "am", "happy"} looks the same as 
{"am", "I", "happy"}.

• Aka a "set" embedding, rather than a "sequence" 
embedding. Which is valuable in some scenarios, but not 
here.

• When token order matters, this is concerning 
from a modeling standpoint...



Positional encodings

• The transformers solution: positional encodings

• Idea: at the beginning of the transformer 
model, element-wise add a positional 
embedding (with the same dimensionality as 
the input X) to each token embedding before 
the first MHA block

• Requirement: Positional embedding must 
encode the "token position"

Element-wise 

addition



Positional encodings

• Positional embedding can either be learned (eg a 
torch.nn.Embedding bank), or hardcoded in a "special way"

• Orig. paper used a sin/cos formula as the positional 
embedding

For more details/intuition on sin/cos, see: [link]

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Where:

pos: sequence index

i: embedding dim index

# Let X be input seq (shape=[seq_len, d])
X_with_pos = torch.zeros(X.shape)
X_with_pos[0, 0] = X[0,0] + sin(0 / (10000 ** (2*0 / d)))
X_with_pos[0, 1] = X[0,1] + cos(0 / (10000 ** (2*1 / d)))
X_with_pos[0, 2] = X[0,2] + sin(0 / (10000 ** (2*2 / d)))
...
X_with_pos[1, 0] = X[1,0] + sin(1 / (10000 ** (2*0 / d)))
X_with_pos[1, 1] = X[1,1] + cos(1 / (10000 ** (2*1 / d)))
X_with_pos[1, 2] = X[1,2] + sin(1 / (10000 ** (2*2 / d)))
...

Alternate sin/cos 

along embed dim

Positional embedding can either be learned (eg a torch.nn.Embedding bank), or computed from a formula
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Transformer: encoder and decoder

• The transformers paper originally 
discussed two components: an Encoder, 
and a Decoder

• Encoder: given an input sequence X, 
generate "good" token embeddings

• Decoder: given an input sequence X, 
generate output tokens Y

• First, let's focus on Encoders (it's 
conceptually simpler)

Encoder

Decoder



Encoder

• Input: X with shape=[bs, seq_len, dim]

• Output: X' with shape=[bs, seq_len, dim]

• Idea: learn a representation of the input 
sequence that is good for downstream 
tasks (eg classification, text generation, 
etc) Encoder 

block

Classification 

head

Task 

head(s)
(eg: classification, 

detection, regression, 

etc)

Output Token 

EmbedsNew learned 

representation



Aside: NN "blocks"

• It's common to define a DNN in terms of "blocks", 
rather than individual layers

• Ex: a "ResNet Bottleneck Block" [link] consists of:

Conv2d

Input feat map

BatchNorm, Relu

Conv2d

BatchNorm, Relu

Conv2d

BatchNorm

+

Relu

"Bottleneck" 

block

Output feat map
Bottleneck 

block (3x)

Bottleneck 

block (4x)

Bottleneck 

block (6x)
Bottleneck 

block (3x)

Class

ifier

"Dog" 

(0.94)

If you're curious here is pytorch's (torchvision) implementation of 

ResNet50 (in all of its gory detail): [link]

Tip: you should be able to read this code and understand 90% of what's 

going on! The implementation is complicated because it's super 

generic+flexible, but with some study you can see what's going on :)

* Some things missing from this resnet50 picture: initial 

"stem", downsampling (spatial resolution) layers, other 

minor details

ResNet50 (Image classification 

arch [link]) is then built by 

repeating the "Bottleneck 

block" a bunch of times

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L108
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py#L736
https://arxiv.org/abs/1512.03385


Encoder block

Residual/skip 

connection

Linear(in=dim_embed, 

out=dim_ff=2048)

Source: 

[TransformerEncoderLayer._ff_block(

)]

Linear

LayerNorm, 

Dropout

Linear

Dropout

Input X

Output

Linear(in=dim_ff=2048, 

out=dim_embed)

Source: 

[TransformerEncoderLayer.forward()]

https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L930
https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L930
https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L897


Encoder Arch

TransformerEncoder

pytorch code: [link]

Encoder block 

repeated N=6 

times

Input sequence X

...repeat...

Encoder 

blocks

Classification 

head

Task 

head(s)
(eg: classification, 

detection, regression, 

etc)

Output Token 

EmbedsNew learned 

representation

Output Token 

Embeds

Encoder

(drawn another way, 

eg from the original 

Transformers paper)

https://github.com/pytorch/pytorch/blob/932b9945c0bc61a11a7db2f52c974cf283d5a2ed/torch/nn/modules/transformer.py#L309


Detail: Pre-norm vs Post-norm

• Original transformers paper did "Post-
LayerNorm" (Post-LN)

• But, smart people found out that "Pre-
LayerNorm" (Pre-LN) works better

• Better training stability, can use larger 
learning rate, etc

• For more details, see: [link]

(Left) Original version. (Right) 

"Improved" version

https://arxiv.org/pdf/2002.04745v1


Application: text classification (Bert)

• BERT ("Bidirectional Encoder 
Representations from 
Transformers"): [link]

• Perform text sentence 
classification using a Transformer 
Encoder + pretraining/finetuning

• Key idea: prepend a "CLS" token 
to the start of every sequence. 
Then, train a classifier on top of 
this CLS token embedding

• Intuition: CLS token stores the 
"global" info about the sentence

"CLS" token: stores global info

Classifier

"Label"

https://arxiv.org/abs/1810.04805


Application: image classification (ViT)

• "An Image is Worth 16x16 
Words: Transformers for 
Image Recognition at Scale" 
[link]

• Image classification with 
Transformer Encoder

• Idea: represent an image as a 
sequence of image patches!

Fun fact: this "linear projection of flattened 

patches" is basically a Conv2d, which people 

laughed about for awhile...

https://arxiv.org/abs/2010.11929
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