
Speaker: Eric Kim

Lecture 10: Computer Vision
Data C182 (Fall 2024). Week 06. Tuesday Oct 1st, 2024

1

Announcements

• Weekly Course Survey out (Week 06) [Gradescope link]

• Due: Friday Oct 4th, 2024 11:59 PM PST

• For more info, see: [link]

• HW02 ("RNNs") will be released within the next ~1 week

2

https://www.gradescope.com/courses/837491/assignments/5083452
https://edstem.org/us/courses/64085/discussion/5358387

Announcements

• Reminder: Midterm is coming up!

• Tuesday, October 22th 2024, 6:30 PM - 8 PM.

• Location: Still TBD, but very likely 50% of class in 10 Evans, remainder in
another building on campus.

• If you're unable to make this time, please contact us ASAP (make a private Ed
post)

• Midterm will cover everything from:

• Lectures, discussions, homework assignments

• In-person, paper + pencil exam.

3

HW01 update

• Q4 backwards() questions are now optional (extra credit)

• conv_backward_naive(), max_pool_backward_naive(),
spatial_batchnorm_backward()

• Due date unchanged: Tues Oct 8th, 11:59 PM PST

• 1 week away!

• For more info, see Ed post: [link]

4

https://edstem.org/us/courses/64085/discussion/5391989

Today's lecture

• Deeper dive into Conv2d

• Computer Vision

• Classification

• Object detection

Convolution (2D)

• Recall: in convolutional neural networks (CNN), a convolutional layer operates as:

• Input: (Spatial) feature map with shape=[num_channels, height, width]

• Ex: input RGB color image, [3, img_height, img_width]

• Ex: intermediate conv feature maps: [num_filters, feat_height, feat_width]

• Output: activation feature map, with shape [num_filters, height_out, width_out]

• Interpretation: output feature map is the result of sweeping a learned filter(s) over
the image

Filters @ Layer 1:

edge detectors?

Filters @ Layer 2:

ears? noses?

Intuition: The

deeper you get

in the ConvNet,

the more

"semantic" the

learned filters

become

Conv2d parameters

• Parameters:

• Filters W: shape=[num_filters, height_filter, width_filter]

• Bias: shape=[num_filters]

• Padding: in practice, often used to ensure that output activation feature map
has same spatial shape as input

• Stride: way to make output feature map smaller (for computation purposes)

Ex: this is a 2x2 filter,

with padding=0 and

stride=2.

Aside: images as tensors
In vision models (eg pytorch), RGB (three channel) images are often represented in uint8 format (ints from [0,255], 0 is black

and 255 is white), with shape=[3, img_height, img_width], and in R-G-B channel order (NOT BGR):

from PIL import Image
import torchvision
imagepath = "UCBerkeleyCampus-scaled.jpg"
with open(imagepath, "rb") as fh:

pil_image = Image.open(fh)
image_tensor = torchvision.transforms.functional.pil_to_tensor(pil_image)

print(f"{type(image_tensor) = }, {image_tensor.dtype = }, {image_tensor.shape = }")
print(f"Red channel: image_tensor[0, :, :]: {image_tensor[0, :, :]}")
print(f"Green channel: image_tensor[1, :, :]: {image_tensor[1, :, :]}")
print(f"Blue channel: image_tensor[2, :, :]: {image_tensor[2, :, :]}")

type(image_tensor) = <class 'torch.Tensor'>, image_tensor.dtype = torch.uint8, image_tensor.shape = torch.Size([3, 1665, 2560])
Red channel: image_tensor[0, :, :]: tensor([[13, 13, 13, ..., 141, 137, 133],

[13, 13, 13, ..., 144, 141, 139],
[12, 13, 14, ..., 144, 144, 142],
...,
[68, 72, 87, ..., 59, 72, 93],
[78, 82, 96, ..., 72, 73, 72],
[90, 100, 114, ..., 74, 62, 62]], dtype=torch.uint8)

Green channel: image_tensor[1, :, :]: tensor([[39, 39, 39, ..., 166, 163, 159],
[39, 39, 39, ..., 169, 167, 165],
[38, 39, 40, ..., 169, 170, 168],
...,

...

Conv2d: visualized
1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

Suppose we create a Conv2D layer with the following parameters:

filter_size: height=2, width=2, padding=1, stride=1

Num output filters: 2

Num input channels: 1 (let's only consider the Red channel for now) 1 2
0 0.5

0 0.1
1 2

Then, our layer parameters will look like:

Filters: shape=[num_filters=2, num_input_channels=1, height_filter=2, width_filter=2]

Bias: shape=[num_filters=2]

The output activation map shape will be: [num_filters=2, height_out=5, width_out=5]

where:

Example: suppose we have a 1-Channel input

image with img_height=img_width=3 pixels.

(Red

channel

only)

height_out = 1 + (input_height + 2 * pad - filter_height) // stride
width_out = 1 + (input_width + 2 * pad - filter_width) // stride

>>> filters[0, 0, :, :]

>>> filters[1, 0, :, :]

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

Conv2d: computation

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

1 2
0 0.5

0 0.1
1 2

(Red

channel

only)

>>> filters[0, 0, :, :]

>>> filters[1, 0, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

0.5
output[0, :, :]:

output[0, 0, 0] = 1 * 0 + 2 * 0 + 0 * 0 + 0.5 * 1 = 0.5

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

Conv2d: computation

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

1 2
0 0.5

0 0.1
1 2

(Red

channel

only)

>>> filters[0, 0, :, :]

>>> filters[1, 0, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

0.5 64
output[0, :, :]:

output[0, 0, 1] = 1 * 0 + 2 * 0 + 0 * 1 + 0.5 * 128 = 64

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

Conv2d: computation

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

1 2
0 0.5

0 0.1
1 2

(Red

channel

only)

>>> filters[0, 0, :, :]

>>> filters[1, 0, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

0.5 64
4output[0, :, :]:

output[0, 1, 0] = 1 * 0 + 2 * 1 + 0 * 0 + 0.5 * 4 = 4

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

Conv2d: computation

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

1 2
0 0.5

0 0.1
1 2

(Red

channel

only)

>>> filters[0, 0, :, :]

>>> filters[1, 0, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

0.5 64
4 307output[0, :, :]:

output[0, 1, 1] = 1 * 1 + 2 * 128 + 0 * 4 + 0.5 * 100 = 307

...and so on

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

Conv2d: computation

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

1 2
0 0.5

0 0.1
1 2

(Red

channel

only)

>>> filters[0, 0, :, :]

>>> filters[1, 0, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

0.5 64
4 307

output[0, :, :]:

output[1, 0, 0] = 0 * 0 + 0.1 * 0 + 1 * 0 + 2 * 1 = 1

1
output[1, :, :]:

Move onto 2nd output

filter!

Let's move onto the

second filter!

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

Conv2d: computation

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

1 2
0 0.5

0 0.1
1 2

(Red

channel

only)

>>> filters[0, 0, :, :]

>>> filters[1, 0, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

0.5 64
4 307

output[0, :, :]:

output[1, 0, 1] = 0 * 0 + 0.1 * 0 + 1 * 1 + 2 * 128 = 257

1 257
output[1, :, :]:

Move onto 2nd output

filter!

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

Conv2d: computation

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

1 2
0 0.5

0 0.1
1 2

(Red

channel

only)

>>> filters[0, 0, :, :]

>>> filters[1, 0, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

0.5 64
4 307

output[0, :, :]:

output[1, 1, 0] = 0 * 0 + 0.1 * 1 + 1 * 0 + 2 * 4 = 8.1

1 257
8.1output[1, :, :]:

Move onto 2nd output

filter!

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

Conv2d: computation

1 128 100 255
4 100 80 0
20 90 70 0
40 50 60 2

1 2
0 0.5

0 0.1
1 2

(Red

channel

only)

>>> filters[0, 0, :, :]

>>> filters[1, 0, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

0.5 64
4 307

output[0, :, :]:

output[1, 1, 1] = 0 * 1 + 0.1 * 128 + 1 * 4 + 2 * 100 = 216.8

1 257
8.1 216.8output[1, :, :]:

Move onto 2nd output

filter!

Tip: for a neat animation that visualizes

convolution layers, see: [link]

...and so on

https://hannibunny.github.io/mlbook/neuralnetworks/convolutionDemos.html

Conv2d: inputs with multiple channels

18

filter

When the input to conv2d has more than 1 channel, each filter's "depth" matches the input's num_channels

Ex: when input image to conv2d has 3 channels ("RGB"), then each conv2d filter has shape=[3, filter_height,

filter_width]. Computation is still element-wise multiplications between input feature map and filter.

Pictured: conv2d with filter_size=3x3,

num_filters=4

0 10 122 215
10 255 50 2
0 90 70 3
95 120 98 4

Conv2d: computation (mult channels)

(Red+Green

channels)

>>> filters[0, :, :, :]

>>> filters[1, :, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

starting from the Red channel first

output[0, 0, 0] = 1 * 0 + 2 * 0 + 0 * 0 + 0.5 * 1 + 1 * 0 + 1 * 0 + 1 * 0 + 1.5 * 0 = 0.5

0.5
output[0, :, :]:

0 10 122 215
10 255 50 2
0 90 70 3
95 120 98 4

1 1
1 1.5

0 0.1
1 2

0 10 122 215
10 255 50 2
0 90 70 3
95 120 98 4

Conv2d: computation (mult channels)

(Red+Green

channels)

>>> filters[0, :, :, :]

>>> filters[1, :, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

starting from the Red channel first

output[0, 0, 1] = 1 * 0 + 2 * 0 + 0 * 1 + 0.5 * 128 + 1 * 0 + 1 * 0 + 1 * 0 + 1.5 * 10 = 79

0.5 79
output[0, :, :]:

0 10 122 215
10 255 50 2
0 90 70 3
95 120 98 4

1 1
1 1.5

0 0.1
1 2

0 10 122 215
10 255 50 2
0 90 70 3
95 120 98 4

Conv2d: computation (mult channels)

(Red+Green

channels)

>>> filters[0, :, :, :]

>>> filters[1, :, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

starting from the Red channel first

output[0, 1, 0] = 1 * 0 + 2 * 1 + 0 * 0 + 0.5 * 4 + 1 * 0 + 1 * 0 + 1 * 0 + 1.5 * 10 = 19

0.5 79
19output[0, :, :]:

0 10 122 215
10 255 50 2
0 90 70 3
95 120 98 4

1 1
1 1.5

0 0.1
1 2

0 10 122 215
10 255 50 2
0 90 70 3
95 120 98 4

Conv2d: computation (mult channels)

(Red+Green

channels)

>>> filters[0, :, :, :]

>>> filters[1, :, :, :]

Convolution (aka "cross correlation"): sliding window computation

Zero

Pad=1

starting from the Red channel first

output[0, 1, 0] = 1 * 1 + 2 * 128 + 0 * 4 + 0.5 * 100 + 1 * 0 + 1 * 10 + 1 * 10 + 1.5 * 255 = 709.5

0.5 79
19 709.5output[0, :, :]:

0 10 122 215
10 255 50 2
0 90 70 3
95 120 98 4

1 1
1 1.5

0 0.1
1 2

Feature map interpretation

23

……
……

What will our output look like?

“Sliding” the filter along the image

It actually looks quite like an “image” itself…

interesting…

"Spatial feature map"

https://medium.com/@saba99/feature-map-35ba7e6c689e

Interpretation: by stacking many conv layers, CNNs learn

hierarchical features.

Lower level layers: Low-level image features (edges).

Middle layers: Mid-level image features (shapes)

Final layers: "semantic" features (eg part detectors, face detectors)

Low level:

edge

detectors

High level: object

detectors. Intuition/hope:

high activations ideally

mean "there is a

semantic object (cat,

dog) in this image!"

https://medium.com/@saba99/feature-map-35ba7e6c689e

Image classifier

24https://medium.com/@saba99/feature-map-35ba7e6c689e

Input image batch. Shape=[batchsize, 3,

img_height, img_width]

Conv2d

...repeated conv blocks......

Conv2d

...repeated conv blocks......

Conv2d

...repeated conv blocks......

Conv2d

...repeated conv blocks......

Conv2d

Final feature map shape: [batchsize, num_channels, height_block5, width_block5]
Flatten

Linear

Softmax class_probs, shape=[batchsize,

num_classes]

Reshape 4D [batchsize, num_chans,

height_block5, width_block5] to 2D

[batchsize,

num_chans*height_block5*width_block5]

Outputs logits. Shape=[batchsize,

num_classes]

Question: how to predict

class probabilities from the

final feature map?

Answer: let's treat the spatial feat map as just

another feature vector (flatten it), then add a

Linear layer afterwards to produce the logits.

Tada! Our first image

classifier.

In practice, more recent

CNNs will do tricks like: skip

connections, multiple Linear

layers, fully convolutional

archs, feature pyramids...

https://medium.com/@saba99/feature-map-35ba7e6c689e

What does a real conv net look like?
“LeNet” network for handwritten digit recognition

pooling

Observation: often, the spatial resolution of the feature maps gets smaller

the deeper you get into the network. The main reason is due to performance:

reducing spatial resolution (eg dividing by 2 every "block") dramatically

improves computation speed and reduces memory requirements.

A justification for why reducing spatial resolution

is OK: for image classification, the higher-level

semantic hierarchical features don't need to

know the "precise pixel location" of objects.

Counterpoint: for some applications (eg object

detection, segmentation), "precise pixel location"

is really important!

Tip: "16@5x5" means: 16 feature

maps, with spatial resolution 5x5

Output is a vector with

shape [10], because

there are 10 target

classes (all single digits)

Standard computer vision problems

object classification semantic segmentation
a.k.a. scene understanding

object detection

Object detection setup

image class label (categorical)

image

Example: ("cat", 0.2, 0, 0.6, 1.0)

Tip: rather than use pixel (absolute)

coordinates, we often use preprocess the

data to use "normalized" coordinates.

Note: an image may have

multiple ground truth objects!

Aside: Representing bbox coordinates

• Image sizes/locs are often represented in terms of "pixels"

• Aka "absolute" coordinates

• Alternate idea: represent bboxes in terms of "normalized"
coordinates

• x_norm = x_px / image_width, y_norm = y_px /
image_height

• Question: would it be better if our bbox training set is in
absolute coordinates, or normalized coordinates? Why?

• Answer: Generally normalized coordinates are preferred
since it generalizes well to multiple image shapes, and
makes the learning problem a little easier.

• If you know in advance that your images are always a fixed size (eg 224x224), then
absolute is maybe OK...

Example: this image has dimensions

width=377px, height=253px.

Box_absolute: (x=30px, y=140px, w=130px, h=125px)

Origin: (0px,0px)

(376px, 252px)

Box_norm: (x=0.08, y=0.55, w=0.35, h=0.49)

Measuring localization accuracy

learned
model

predicted bounding box

prediction score (e.g., probability)

Did we get it right?

Intersection over Union (IoU)

intersection area (I) union area (U)

IoU = I / U

Different datasets have different protocols, but one reasonable one is: correct if IoU > 0.5

If also outputting class label (usually the case): correct if IoU > 0.5 and class is correct

This is not a loss function! Just an evaluation standard

Object localization

Object localization as regression

class label

cross-entropy loss

regression loss

(e.g., Gaussian log-likelihood, MSE)

➢ Most object detection systems look
something like this

➢ One "head" for doing classification
➢ Another "head" for predicting bounding boxes
➢ Different approaches may change the picture,

but the spirit is still there

Classification

task ("head")

Bbox regression

task ("head")

Reasonable bbox losses: sum squared error (L2)

of each term:

Loss = (x-x')**2 + (y-y')**2 + (w-w')**2 + (h-h')**2 x is predicted, x' is ground

truth

Other choices used:

"Smooth" L1 error,

"Focal" loss

Sliding windows

class label

class label

What if we classify every patch in the image?

Problem: In theory, it could

work...but it'd be so, so slow.

There are so many candidate

patches in an image. Not

practical!

Case study: Faster-RCNN (2015)

• This is a series of work on getting object
detection to work with ConvNets

• R-CNN (2013), Fast R-CNN (2015), Faster
RCNN (2015)

• Core idea with Faster-RCNN

• "Region proposal". First, have the model predict
high quality candidates for where an object
might be

• "Classification + refinement". Then, have the
model process each candidate location, and
determine if there is actually an object in there.

• Also, refine the bbox coordinates

Faster-RCNN: Forward pass

(1) First, we run a ConvNet on

the input image to produce a

final spatial feature map (eg

output from the final conv2d

block)

(2) We run the "Region

Proposal Network" (RPN)

which, given the feature

map, produces a set of N

"object proposals", aka

bboxes that the RPN thinks

has SOME object in it.
(3) For each proposal, we

extract the CNN features via a

"Region of Interest Pooling"

(RoI pooling) layer.

(4) For each proposal + their RoI

pooling features, we run a classifier to

predict the class.

(1)
(2)

(3)

(4)

How does the Region Proposal Network work?

Ren et al. “Faster R-CNN.” 2015

First, we do a 3x3 conv2d

(num_out_filters=256 or 512),

producing a [chans=256, h, w]

feature map.

For each spatial location (i, j), we

take the 256-dim vector and do two

separate FC layers to predict

Score: is_object vs not_object

Box coords: (x, y, w, h)

Neat trick: rather than

explicitly have Linear layers

(FC), we can implement the

score/box heads via a 1x1

conv!

Details: Anchor Boxes

Ren et al. “Faster R-CNN.” 2015

Rather than directly predict

just one bbox for each

spatial location (i, j), instead

we predict adjustments to

k=9 "anchor boxes".
In the paper: k=9

anchor boxes. 3

different aspect

ratios, then 3

different scales

(small, medium,

large).

Anchor box

definitions are an

important

hyperparameter!

Thus, the final outputs of the RPN

are actually:

Scores: shape=[h*w*k, 2]

Two classes: "is_object" and

"background".

Bbox Proposals: shape=[h*w*k, 4]

Each row is [dx, dy, dh, dw], aka an

adjustment to the k-th anchor box.

RPN: 1x1 Conv?
Recall: the RPN's 3x3 conv2d

produces a feature map with

shape=[256, h, w].

Question: How do we turn this

feature map into these desired

outputs?

Scores: shape=[h*w*k, 2]

Two classes: "is_object" and

"background". ("objectness" score)

Bbox Proposals: shape=[h*w*k, 4]

Each row is [dx, dy, dh, dw], aka an

adjustment to the k-th anchor box.

Their answer: 1x1 conv2ds, with a carefully

chosen number of output channels!

RPN: 1x1 Conv?
cnn_feat_map = CNN(image) # [batchsize, chans, h_cnn, w_cnn]
Start: RPN
conv2d_rpn = Conv2d(filter_size=(3,3), num_chans_out=256, stride=1, pad=1)
rpn_feat_map = conv2d_rpn(cnn_feat_map) # [batchsize, 256, h, w]

conv2d_cls = Conv2d(filter_size=(1,1), num_chans_out=2 * k, pad=0, stride=1)
conv2d_bbox = Conv2d(filter_size=(1,1), num_chans_out=4 * k, pad=0, stride=1)

preds_cls = conv2d_cls(rpn_feat_map) # [batchsize, 2*k, h, w]
preds_bbox = conv2d_bbox(rpn_feat_map) # [batchsize, 4*k, h, w]

preds_cls[0, :, i, j] is the class probs [is_obj, is_bkgd] at spatial location (i,j),
[prob0_anchor0,prob1_anchor0, prob0_anchor1,prob1_anchor1, ...]
pred_bbox[0, :, i, j] is the box deltas (dx,dy,dw,dh) for spatial location (i,j):
[dx_anchor0,dy_anchor0,dw_anchor0,dh_anchor0, dx_anchor1,dy_anchor1,dw_anchor1,dh_anchor1, ...]

End: RPN

Clever trick of implementing a Linear(in=256,out={2*k,4*k}) via a 1x1

conv2d with a special choice of number of output channels. Please study

this until you understand why this works!

Faster-RCNN: Forward pass
So far (post RPN): we have proposed objectness scores (shape=[batchsize, 2*k, h, w])

and bboxes (shape=[batchsize, 4*k, h, w]).

Next: what I'd like to do is classify each object proposal into the actual predictions I care

about: final class predictions ("cat" vs "dog"), and box locations.

Question: suppose I trained a classifier directly on top of the

RPN outputs in this way. Will this work well?

RPN Linear SoftMax Class probs. Shape=[batchsize, num_proposals, num_classes]
proposal_scores.

shape=[batchsize,

num_proposals, 2]

proposal_bboxes.

shape=[batchsize,

num_proposals, 4]
Linear Bbox preds. Shape=[batchsize,

num_proposals, 4]

Answer: No, this will not work well because we're not

passing any visual information to the classification / box

heads! Basically asking the detector to classify "blind".

Question: if we did want to implement

this, what would the shapes of each

Linear's Weight matrix be?

Answer: Classification Linear.W.shape=[num_classes, 2]

Bbox Linear.W.shape=[4, 4]

Tip: to simplify implementation, I reshaped the RPN output

from [batchsize, 2*k, h, w], where `num_proposals=h*w*k`

Faster R-CNN
• How to get visual features for a given box

proposal?

• Intuition: in image pixel space, we can
crop an image via a bbox

• In theory, this could work:

• Crop the image pixels corresponding to
the proposal bbox

• Run this image patch through the CNN
again to extract proposal features

• Run the classifier/box head to produce
final predictions (class, box coords)

Crop

Requires computing the proposal bbox

coords from the CNN feature map

coord space (eg 16x16 feat map) to the

original image pixel space (eg

224x224). Which is do-able!

Feature map: [16x16]

i=14, j=3
x=248,

j=57

Image: [w=260px, h=260px]

Downside: the second CNN forward pass is slow and wasteful.

Idea: let's reuse the feature map we've already computed!

RoI Pooling

• A way of "cropping" a CNN spatial feature map via a bounding box.

Tip: nice animation explaining RoIPooling is

here: [link]

CNN spatial feature

map (8x8)

Proposal

box

(1) Grid up proposal box into a

fixed number of cells (eg 4 cells)

(2) Calculate

max value in

each cell

(3) Output! Feed to

your downstream

classifier/box head

https://deepsense.ai/region-of-interest-pooling-explained/

https://deepsense.ai/region-of-interest-pooling-explained/
https://deepsense.ai/region-of-interest-pooling-explained/

RoI Pooling

• Fortunately, we can define a backwards()
for this that is reasonable.

• Allows us to backprop through this!
Amazing.

• Several variations exist, like:

• Aggregators. Rather than max-ing each
cell, take average? Median?

• More accurate interpolating. Rather than
having discrete cell edges (possibly
causing mismatched cell sizes), use
interpolation to calculate each cell's value

• Generalize beyond boxes, eg: circles

Tip: nice animation explaining RoIPooling is

here: [link]

https://deepsense.ai/region-of-interest-pooling-explained/

https://deepsense.ai/region-of-interest-pooling-explained/
https://deepsense.ai/region-of-interest-pooling-explained/

Faster R-CNN: putting it together

RPN Linear SoftMax
proposal_scores.

shape=[bs,

num_proposals, 2]

proposal_bboxes.

shape=[bs,

num_proposals, 4]
Linear

CNN

cnn_feats.

shape=[bs,

chans, h, w]

RoI

Pool

proposal_feats.

shape=[bs,

num_proposals, dim]

`dim` is the number of output feats

RoIPool calculates per proposal, aka

num cells (ex: 4)

Class probs.

Shape=[bs,

num_proposals,

num_classes]

Bbox preds.

Shape=[bs,

num_proposals, 4]

Dog: 0.95 Dog: 0.84

Implementation detail: to reduce

computation, we discard all

proposals whose "objectness"

score is below a threshold (eg

<0.2)

Takeaway: FRCNN is a neat case

study to see one way to solve an

important problem (object detection) via

deep learning building blocks (eg

Conv2d, Linear, etc)

More broadly, in this class we hope you

will be able to learn the skills to come

up with novel model archs to solve your

own interesting problems!

Conv2d: Backwards

• Let's express conv2d forwards() as: Y = X * w + b, where:

• Y: output, shape=[num_filters, height_out, width_out]

• X: input, shape=[num_chans_in, height_in, width_in]

• w: filters, shape=[num_filters, num_chans_in, height_filter, width_filter].

• b: bias, shape=[num_filters]

• "*" means convolution (more precisely, cross-correlation)

• To implement conv2d's backwards, we need to compute these terms:

𝑑𝐿𝑜𝑠𝑠

𝑑𝑋
,

𝑑𝐿𝑜𝑠𝑠

𝑑𝐹𝑖𝑙𝑡𝑒𝑟𝑠
,
𝑑𝐿𝑜𝑠𝑠

𝑑𝐵𝑖𝑎𝑠
Recall: we're given

𝑑𝐿𝑜𝑠𝑠

𝑑𝑌

𝑋 =

𝑥00 𝑥01 𝑥02
𝑥10 𝑥11 𝑥12
𝑥20 𝑥21 𝑥22Y =

𝑦00 𝑦01
𝑦10 𝑦11

Conv2d: Backwards:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑋

𝑑𝐿𝑜𝑠𝑠

𝑑𝑋
=

𝑑𝑌

𝑑𝑋

𝑑𝐿𝑜𝑠𝑠

𝑑𝑌

We're already given

this ("dout")

[dim(X),1] [dim(X), dim(Y)] [dim(Y), 1] 𝑤 =
𝑤00 𝑤01

𝑤10 𝑤11

𝑦00 = 𝑥00𝑤00 + 𝑥01𝑤01 + 𝑥10𝑤10 + 𝑥11𝑤11

𝑦01 = 𝑥01𝑤00 + 𝑥02𝑤01 + 𝑥11𝑤10 + 𝑥12𝑤11

(1) Let's look at how the X's output

each Y output (eg
𝑑𝑌

𝑑𝑋
):

(assume stride=1, padding=0,

chans_in=1, chans_out=1)

𝑑𝑌00
𝑑𝑋𝑖𝑗

= ቊ
𝑤𝑖𝑗 , 𝑖𝑓 𝑖, 𝑗 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟_𝑖𝑛𝑑𝑠 0,0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

"filter_inds(0,0)" means: the

indices that the filter would have

iterated over for y_00. Ex: for a

2x2 filter, filter_inds(0,0) = [[0,0],

[0,1], [1,0], [1,1]]

𝑑𝑌00

𝑑𝑋
=

𝑤00 𝑤01 0 …
𝑤10 𝑤11 0 …
0 0 0 …
… … … 0

𝑑𝑌01

𝑑𝑋
=

0 𝑤00 𝑤01 0 …
0 𝑤10 𝑤11 0 …
0 0 0 0 …
… … … … 0

(2)
𝑑𝑌

𝑑𝑋
has a very specific structure (eg

replicated filter weights w) AND is very sparse.

Similar to Linear layer's
𝑑𝐿

𝑑𝑊
, let's take

advantage of the structure to simplify

calculation

𝑑𝑌01
𝑑𝑋𝑖𝑗

= ቊ
𝑤𝑖𝑗 , 𝑖𝑓 𝑖, 𝑗 ∈ 𝑓𝑖𝑙𝑡𝑒𝑟_𝑖𝑛𝑑𝑠 0,1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Conv2d: Backwards:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑋
𝑑𝐿𝑜𝑠𝑠

𝑑𝑋
=

𝑑𝑌

𝑑𝑋

𝑑𝐿𝑜𝑠𝑠

𝑑𝑌

𝑑𝐿𝑜𝑠𝑠

𝑑𝑋
= ෍

𝑖,𝑗

𝑑𝑌𝑖,𝑗

𝑑𝑋

𝑑𝐿

𝑑𝑌𝑖,𝑗 (by defn. of mat-mult)

=

𝑤00 𝑤01 0 …
𝑤10 𝑤11 0 …
0 0 0 …
… … … 0

𝑑𝐿

𝑑𝑌00
+

0 𝑤00 𝑤01 0 …
0 𝑤10 𝑤11 0 …
0 0 0 0 …
… … … … 0

𝑑𝐿

𝑑𝑌01
+ …

We're already given

this ("dout")

...hey, this is starting to look computable!

Conv2d: Backwards:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑋
𝑑𝐿𝑜𝑠𝑠

𝑑𝑋
=

𝑑𝑌

𝑑𝑋

𝑑𝐿𝑜𝑠𝑠

𝑑𝑌

𝑑𝐿𝑜𝑠𝑠

𝑑𝑋
= ෍

𝑖,𝑗

𝑑𝑌𝑖,𝑗

𝑑𝑋

𝑑𝐿

𝑑𝑌𝑖,𝑗
=

𝑤00 𝑤01 0 …
𝑤10 𝑤11 0 …
0 0 0 …
… … … 0

𝑑𝐿

𝑑𝑌00
+

0 𝑤00 𝑤01 0 …
0 𝑤10 𝑤11 0 …
0 0 0 0 …
… … … … 0

𝑑𝐿

𝑑𝑌01
+ …

We're already given

this ("dout")

Pseudo code:
init dloss_dx = np.zeros([batchsize, chans_in, height_in, width_in])
let filter have shape=[chans_in, filter_height, filter_width]
let dout (dLoss/dY), shape=[batchsize, chans_out, height_out, width_out]

for each location (i,j) in this conv layer's output:
for ind_batch in range(batchsize):

filter_inds is list of pairs denoting the spatial locations
where the filter walks through the input. Ex: [[i,j], ...]
filter_inds = compute_filter_inds(i, j, conv_param)
for filter_i, filter_j in filter_inds:

dloss_dx[ind_batch, :, filter_i, filter_j] += (
filter[:, filter_i, filter_j] * dout[ind_batch, :, i, j]

)
Tip: make sure that compute_filter_inds() handles params like: pad, stride

Aside: this is a "direct" way of

computing dLoss/dX.

(Optional) Another neat way

involves recognizing that dLoss/dX

can be implemented as a

convolution between a "rotated" w

and dout! To see how this is done,

see this: [link]

https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

Conv2d: Backwards:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤

(by defn of mat-vector mult.)

Note: we're using denominator

format for partial derivative here

(orig slides uses numerator format)

Assume 2x2 filter, no

padding, stride=1, 1 channel

https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

𝑑𝐿𝑜𝑠𝑠

𝑑𝑤
=

𝑑𝑌

𝑑𝑤

𝑑𝐿𝑜𝑠𝑠

𝑑𝑌

𝑑𝐿𝑜𝑠𝑠

𝑑𝑤𝑖′,𝑗′
= ෍

𝑖,𝑗

𝑑𝑌𝑖,𝑗

𝑑𝑋𝑖′,𝑗′

𝑑𝐿

𝑑𝑌𝑖,𝑗

Tip: for the following, "O" is Y

("output"), and "F" is w ("filter")

https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

Conv2d: Backwards:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤

https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

𝑑𝑂11
𝑑𝐹11

= 𝑋11

𝑑𝑂12
𝑑𝐹11

= 0

Side quest: what is
𝑑𝑂

𝑑𝐹
(aka

𝑑𝑌

𝑑𝑤
)?

𝑑𝑂11
𝑑𝐹12

= 0,…

𝑑𝑂12
𝑑𝐹12

= 𝑋12, …

Interpretation: For a given output

location O_ij, each filter value F_ij

interacts (via element-wise mult) only

with a single value in X

https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

Conv2d: Backwards:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤

https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

Conv2d: Backwards:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤

https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

https://deeplearning.cs.cmu.edu/F21/document/recitation/Recitation5/CNN_Backprop_Recitation_5_F21.pdf

Conv2d: Backwards:
𝑑𝐿𝑜𝑠𝑠

𝑑𝑤
x, w, b, conv_param = cache
dw = np.zeros_like(w)
stride, pad = conv_param['stride'], conv_param['pad']
N, C, H, W = x.shape
F, C, HH, WW = w.shape

dout: (N, F, H, W)
Tip: pad x to simplify downstream index calculations.
x = np.pad(x, ((0, 0), (0, 0), (pad, pad), (pad, pad)), mode='constant')

for h in range(1 + (H + 2 * pad - HH) // stride):
for w in range(1 + (W + 2 * pad - WW) // stride):

for n in range(N):
for f in range(F):

for c in range(C):
i1_x, j1_x denote the spatial location in (padded) x that
correspond to location (h,w) in the output Y
Tip: since x is already padded, we don't have to consider
padding in this index calculation
i1_x = h * stride
j1_x = w * stride
compute element-wise mult (aka cross-corr) between X and dout
x_region = x[n, c, i1_x:h*stride + HH, j1_x:w*stride+WW]
dw[f, c, :, :] += (x_region * dout[n, f, h, w])

Tip: this might be a little slow, so

vectorizing it will help a lot with

performance.

Note: writing performant

vectorized numpy code is NOT

the focus of this course

	Slide 1: Lecture 10: Computer Vision
	Slide 2: Announcements
	Slide 3: Announcements
	Slide 4: HW01 update
	Slide 5: Today's lecture
	Slide 6: Convolution (2D)
	Slide 7: Conv2d parameters
	Slide 8: Aside: images as tensors
	Slide 9: Conv2d: visualized
	Slide 10: Conv2d: computation
	Slide 11: Conv2d: computation
	Slide 12: Conv2d: computation
	Slide 13: Conv2d: computation
	Slide 14: Conv2d: computation
	Slide 15: Conv2d: computation
	Slide 16: Conv2d: computation
	Slide 17: Conv2d: computation
	Slide 18: Conv2d: inputs with multiple channels
	Slide 19: Conv2d: computation (mult channels)
	Slide 20: Conv2d: computation (mult channels)
	Slide 21: Conv2d: computation (mult channels)
	Slide 22: Conv2d: computation (mult channels)
	Slide 23: Feature map interpretation
	Slide 24: Image classifier
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Aside: Representing bbox coordinates
	Slide 29
	Slide 30: Object localization
	Slide 31
	Slide 32
	Slide 33: Case study: Faster-RCNN (2015)
	Slide 34: Faster-RCNN: Forward pass
	Slide 35
	Slide 36
	Slide 37: RPN: 1x1 Conv?
	Slide 38: RPN: 1x1 Conv?
	Slide 39: Faster-RCNN: Forward pass
	Slide 40: Faster R-CNN
	Slide 41: RoI Pooling
	Slide 42: RoI Pooling
	Slide 43: Faster R-CNN: putting it together
	Slide 44: Conv2d: Backwards
	Slide 45: Conv2d: Backwards: d cap L o s s over d cap X
	Slide 46: Conv2d: Backwards: d cap L o s s over d cap X
	Slide 47: Conv2d: Backwards: d cap L o s s over d cap X
	Slide 48: Conv2d: Backwards: d cap L o s s over d w
	Slide 49: Conv2d: Backwards: d cap L o s s over d w
	Slide 50: Conv2d: Backwards: d cap L o s s over d w
	Slide 51: Conv2d: Backwards: d cap L o s s over d w
	Slide 52: Conv2d: Backwards: d cap L o s s over d w

