
Speaker: Eric Kim

Lecture 08: Backprop Part 2
Data C182 (Fall 2024). Week 05. Tuesday Sept 24th, 2024

1
Rev01: 2024-10-02 7:45 PM PST

Announcements

• HW01: Updated deadline

• Old: Tues Oct 1st, 11:59 PM PST

• New: Tues Oct 8th, 11:59 PM PST

• Tip: you'll find this week's discussion (Week 05) very helpful for HW01.

• Keep asking questions on Ed and office hours

2

Today's lecture

• Deeper dive into the backpropagation algorithm, and how it connects to code

• (Useful for HW01!)

Tip: partial derivative shapes

• When you see a symbol like:

𝑑𝑧

𝑑𝑎

Suppose z has shape=[n],

and a has shape=[m]

Shape=[dim(a), dim(z)] => [m, n]

This is "denominator" convention, as the shape is

[dim(denominator), dim(numerator)]

𝑑𝐿𝑜𝑠𝑠

𝑑𝑧
Shape=[dim(z), 1] => [m, 1] Since our Loss is a scalar

𝑑𝑧

𝑑𝑊

Variant 1(flatten W matrix into a vector):

Shape=[dim(W), dim(z)] => [m*n, dim(z)]

Suppose W is a matrix with

shape=[n,m]

Depending on your computation, one

view may be easier than another

Variant 2 (no flattening, work with tensors):

Shape=[n, m, dim(z)]

Tip: When working with partial

derivatives (eg debugging

HW01 code), it's really helpful

to keep track of what all the

shapes should be

Tip: for our backprop calculations, multiplying
𝑑𝑧

𝑑𝑊

𝑑𝐿

𝑑𝑧

means multiplying a matrix with shape=[dim(W), dim(z)]

with a vector with shape=[dim(z), 1]. Eg flatten dz/dW!

Chain rule for neural networks

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

A neural network is just a composition of functions

So we can use chain rule to compute gradients!

Chain rule and `backwards()`

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

Gradient of

Linear(1)

output wrt

params W

Grad. of

Sigmoid wrt

inputs z(1)

Grad. of

Linear(2) wrt

inputs a(1)

Grad. of

Loss wrt

inputs z(2)

Aka: decompose what we want (
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊(1)) into terms

that are local calls to a layer's `backwards()`

function (eg in HW01).

def layer_backwards(dout, cache):
Given: dout (upstream, loss w.r.t. layer's outputs)
Compute two things:
(1) Gradient of loss w.r.t. layer's inputs
Tip: typically done by computing d_output_d_input
and multiplying with dout
(2) Gradient of loss w.r.t. layer parameters (if any,

ex Relu has no trainable params)
...

Insight: rather than (laboriously) compute gradients for all trainable

parameters, instead define backwards() for each of your layers that

follows the above interface, and backpropagation will "do the right

thing" (aka chain rule) to get you the gradients you need!

One view:

Does it work?

We can calculate each of these Jacobians!

Example:
Why might this be a bad idea?

[n_c x 1][m x n_c][m x m][|W| x m][|W| x 1]

or [m x m], if

W.shape=[m,m]

|W|: num elements in param matrix W

m: hidden dimensionality

n_c: num target classes (assuming

classification)

Shapes:

(depends if you like working with tensors or matrices)

Tip: this is "denominator" convention

Doing it more efficiently

this is always true because
the loss is scalar-valued!

Idea: start on the right

The backpropagation algorithm
“Classic” version

softmax
sigmoid

layer

linear
layer

sigmoid
layer

sigmoid
layer

2x1

Tip: δ is `dout` in HW01

𝑑𝑓

𝑑𝜃𝑓
: Deriv. of layer output w.r.t.

layer parameters 𝜃𝑓 (if any)

𝑑𝑓

𝑑𝑥𝑓
: Deriv. of layer output w.r.t.

layer inputs 𝑥𝑓

Backprop (pseudocode)
from typing import Dict
import numpy as np

def backprop_pseudocode(
model, x: np.ndarray,
targets: np.ndarray) -> Tuple[float, Dict[int, np.ndarray]]:

Forwards
forward_outs = []
cur_x = x
For simplicity: assume model is just a single path, no branches
for layer in model.layers:

out, cache = layer.forward(cur_x)
forward_outs.append((out, cache))
cur_x = out

Assume that final cur_x is the logits
logits = cur_x
loss, d_loss_d_logits = model.softmax_loss(logits, targets)

Backwards
d_loss_d_cur_outputs = d_loss_d_logits
grads = {} # map layer index to their d_loss_d_param gradients
Begin: backpropagation algorithm
iterate in reverse layer order (starting at layer before loss)
for i, layer in enumerate(model.layers[::-1]):

ind_layer = len(model.layers) - i - 1
cache = forward_outs[ind_layer][1]
d_loss_d_cur_inputs, d_loss_d_params = layer.backward(

d_loss_d_cur_outputs, cache)
grads[ind_layer] = d_loss_d_params
current layer's inputs becomes outputs of the previous layer
d_loss_d_cur_outputs = d_loss_d_cur_inputs

return loss, grads

d_loss_d_params layer.backward()

computes this product

d_loss_d_cur_outputs

layer.backward() computes this

product: d_loss_d_cur_inputs

d_loss_d_logits
d_loss_d_cur_outputs

Connecting the previous math

equations to our code

d_loss_d_cur_outputs
(pre overwrite)

Let’s walk through it…

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

Calling linear_backwards() gives us:
𝑑𝑓

𝑑𝜃𝑓
(aka

𝑑𝑧(2)

𝑑𝑊(1),
𝑑𝑧(2)

𝑑𝑏(1)
), and

𝑑𝑓

𝑑𝑥𝑓
(aka

𝑑𝑧(2)

𝑑𝑎(1)
)

Building the model + backprop: in code

Network Architecture: Linear -> Relu -> Linear -> SoftMax -> CrossEntropyLoss

Model parameters ("trainable parameters"):

Question: what are the model parameters?

Answer: Each Linear layer has their own weight, bias

parameters.

Thus, with two Linear layers, we have two Weight

matrices, and two bias vectors.

Suppose we have d input features, n_c target classes,

and we want the intermediate activations ("hidden dim") to

have dimensionality h.

Question: what are the shapes of each Linear layer's

weight, bias?

Answer:

Linear(1): Weight.shape=[d, h], bias.shape=[h]

Linear(2): Weight.shape[h, n_c], bias.shape=[n_c]

Tip: randomly init weight via normal dist (0 mean, 1.0
var)
Init bias to be all 0's
weight1 = np.random.normal(0, 1.0, size=(d, h))
bias1 = np.zeros(h)

weight2 = np.random.normal(0, 1.0, size=(h, n_c))
bias2 = np.zeros(n_c)

x.shape=[1, d], weight1.shape=[d, h], bias1.shape=[h]
matmult-ing a [1, d] with a [d, h] => [1, h]
=> out1.shape=[1, h]
out1 = x.dot(weight1) + bias1

weight2.shape=[h, n_c], bias2.shape=[n_c]
matmult-ing a [1, h] with a [h, n_c] => [1, n_c]
=> out2.shape=[1, n_c]
out2 = out1.dot(weight2) + bias2

Forward, backwards (in code)

Network Architecture: Linear -> Relu -> Linear -> SoftMax -> CrossEntropyLoss
x.shape=[batchsize, d]
target_classe.shape=[batchsize]
Forward
out1, affine1_cache = affine_forward(x, weights1, bias1)
out1, relu_cache = relu_forward(out1)
logits, affine2_cache = affine_forward(out1, weights2, bias2)

Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_loss_d_affine2_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_loss_d_relu_inputs = relu_backward(d_loss_d_affine2_inputs,
relu_cache)
d_loss_d_affine1_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_loss_d_relu_inputs, affine1_cache)

grads = {
'W1': d_loss_d_w1, 'b1': d_loss_d_b1,
'W2': d_loss_d_w2, 'b2': d_loss_d_b2,

}

Solving for
𝑑𝐿𝑜𝑠𝑠

𝑑𝑊(2)

𝑑𝑓

𝑑𝑥𝑓
: Deriv. of layer output w.r.t. layer input

𝑑𝑓

𝑑𝜃𝑓
: Deriv. of layer output w.r.t. layer parameters (if any)

Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_loss_d_affine2_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_loss_d_relu_inputs = relu_backward(d_loss_d_affine2_inputs, relu_cache)
d_loss_d_affine1_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_loss_d_relu_inputs, affine1_cache)

𝑑_𝑙𝑜𝑠𝑠_𝑑_𝑙𝑜𝑔𝑖𝑡𝑠

d_loss_d_logits

(`dout` in

affine_backward())

Product is computed

in affine_backward()

Shape: [h, n_c]

Solving for
𝑑𝐿𝑜𝑠𝑠

𝑑𝑊(1)

𝑑𝑓

𝑑𝑥𝑓
: Deriv. of layer output w.r.t. layer input

𝑑𝑓

𝑑𝜃𝑓
: Deriv. of layer output w.r.t. layer parameters (if any)

Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_loss_d_affine2_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_loss_d_relu_inputs = relu_backward(d_loss_d_affine2_inputs, relu_cache)
d_loss_d_affine1_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_loss_d_relu_inputs, affine1_cache)

𝑑_𝑙𝑜𝑠𝑠_𝑑_𝑙𝑜𝑔𝑖𝑡𝑠

`d_loss_d_logits`

`d_loss_d_affine2_inputs`

`d_loss_d_relu_inputs`

`d_loss_d_w1`

https://simpsons.fandom.com/wiki/Woo-hoo!?file=Woo_hoo%21_poster.jpg

https://simpsons.fandom.com/wiki/Woo-hoo!?file=Woo_hoo%21_poster.jpg

Aside: what are these terms?

`d_loss_d_logits`

`d_loss_d_affine2_inputs`

`d_loss_d_relu_inputs`

`d_loss_d_w1`

𝑑𝐿𝑜𝑠𝑠

𝑑𝑎(1)
=

𝑑𝑧(2)

𝑑𝑎(1)
𝑑𝐿𝑜𝑠𝑠

𝑑𝑧 2

2x1 3x1

linear
layer

relu

3x1

linear
layer

softmax
cross-ent

loss

𝑑𝐿𝑜𝑠𝑠

𝑑𝑧(1)
=
𝑑𝑎(1)

𝑑𝑧(1)
𝑑𝑧(2)

𝑑𝑎(1)
𝑑𝐿𝑜𝑠𝑠

𝑑𝑧 2

𝑑𝐿𝑜𝑠𝑠

𝑑𝑊(1)
=

𝑑𝑧(1)

𝑑𝑊(1)

𝑑𝑎(1)

𝑑𝑧(1)
𝑑𝑧(2)

𝑑𝑎(1)
𝑑𝐿𝑜𝑠𝑠

𝑑𝑧 2

(By Chain Rule)

(By Chain Rule)

(By Chain Rule)

Intuition: This (backprop) works so nicely because

(1) Chain rule naturally decomposes into terms for each layer, and

(2) We can easily (and efficiently!) compute the gradients of each layer

with respect to their input(s) and their layer parameters (if any)

Important caveat: your layers must be

differentiable w.r.t. inputs and parameters! If

not, then you can't train with them (aka

"backprop through" them).

Aside: sometimes if your function is "almost"

differentiable (eg Relu at 0), you can get away

with using subgradients.

Building the model + backprop: in code

𝑑𝑓

𝑑𝑥𝑓
: Deriv. of layer output w.r.t. layer input

𝑑𝑓

𝑑𝜃𝑓
: Deriv. of layer output w.r.t. layer parameters (if any)

Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_loss_d_affine2_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_loss_d_relu_inputs = relu_backward(d_loss_d_affine2_inputs, relu_cache)
d_loss_d_affine1_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_loss_d_relu_inputs, affine1_cache)

𝑑_𝑙𝑜𝑠𝑠_𝑑_𝑙𝑜𝑔𝑖𝑡𝑠

`d_loss_d_logits`

`d_loss_d_affine2_inputs`

`d_loss_d_relu_inputs`

`d_loss_d_w1`

Note how there is a "chain" that

links each backwards() call,

starting with `d_loss_d_logits`.

This matches up with the following

update equation and the above

right-to-left reduction:

What is this *_cache?

x.shape=[batchsize, d]
target_classes.shape=[batchsize]
Forward
out1, affine1_cache = affine_forward(x, weights1, bias1)
out1, relu_cache = relu_forward(out1)
logits, affine2_cache = affine_forward(out1, weights2, bias2)

Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_affine2_d_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_relu_d_inputs = relu_backward(d_affine2_d_inputs, relu_cache)
d_affine1_d_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_relu_d_inputs, affine1_cache)

Implementation detail: many

*_backwards() functions needs to

know information from the *_forwards()

function.

Ex: affine_backwards() needs to know

the original input to affine_forwards() to

calculate d_loss_d_w, etc.

In HW01, the

*_forwards()/*_backwards() functions

will make it clear what you need to put

in the caches.

Example: relu cache

Relu backward:

To compute the gradient, relu_backward() needs to

know the indices where the relu_forward(x) inputs

were positive.

Relu forward:

Implementation Idea: let's have

relu_forward(x) emit not only the relu

output, but also any additional info that

relu_backwards() may need, aka a "cache": relu_out, relu_cache = relu_forward(x)
...
bkwd_out = relu_backward(dout, relu_cache)

Ex: `relu_cache` contains the

indices where x is positive

Example: relu cache

def relu_forward(x: np.ndarray) -> Tuple[np.ndarray, Dict[str, Any]]:
mask_positive: shape=x.shape, True/False entries
mask_positive = x > 0
out = np.copy(x)
out[~mask_positive] = 0
cache = {"x_mask_positive": mask_positive}
return out, cache

def relu_backward(dout: np.ndarray, cache: Dict[str, Any]) -> np.ndarray:
x_mask_positive = cache["x_mask_positive"]
np.where(...) turns the bool mask into an int 0/1 mask
dx = dout * np.where(x_mask_positive, 1, 0)
return dx

Relu backward:Relu forward:

Note: In HW01, the cache is

implemented as a tuple, not as a dict,

but the same idea holds

Store positive indices of input x...

...so that backwards() can use it!

Common layer recipies

• Recall that, when defining a new NN layer to use in backpropagation, we must
compute the loss with respect to (1) the layer's inputs, and (2) the layer's
trainable parameters (if any)

• Here are steps on how to derive (1) and (2) for some common layers

• Some general tips on doing this yourself

• Try writing out the scalar terms, and see if you can identify a pattern that lets
you "generalize" to the final vector (or matrix!)

• Sanity check matrix/vector shapes to make sure things are right!

Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)

[m x k x dim(z)]

[m x k]

[dim(z) x 1]

Aka: dz_dw[:, :, 2], shape=[m, k]

Neat trick: much easier to compute this

than explicitly forming
𝑑𝑧

𝑑𝑊

Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)

Interpretation: if I change my bias b_i

term by +1, then I expect the output

z_i to also change by +1.

Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)

[dim(z) x 1]
[dim(a) x dim(z)]

W.shape=[dim(z), dim(a)]
In more detail:

(Using "denominator" format)

Let dz_da.shape=[dim(a), dim(z)]

dz_da[k, :] = W[:, k] # by (1)

Aka: k-th row of dz_da is the k-th column

of W

=> dz_da is W.T
(1)

Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)

Backpropagation recipes: sigmoid

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

Backpropagation recipes: ReLU

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

Interpretation: only the positive entries of

the Relu input contribute to the gradient.

Question: suppose during a training iteration all of the outputs of this Relu are 0

(eg all Relu inputs were negative). What happens during this training iteration?

Answer: All of the layers preceding this Relu will have 0 gradients, meaning that

their trainable parameters will not get updated at all.

Question: can the model ever hope to "recover" from this dead Relu? What are

some migitations we can do to avoid this "dead neuron" issue?

Answer: Hope that other batches will "kick" the dead neuron out of the dead

negative region. Mitigations: leaky Relu, Gelu, careful weight initialization

Summary

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

	Slide 1: Lecture 08: Backprop Part 2
	Slide 2: Announcements
	Slide 3: Today's lecture
	Slide 4: Tip: partial derivative shapes
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Backprop (pseudocode)
	Slide 11
	Slide 12: Building the model + backprop: in code
	Slide 13: Forward, backwards (in code)
	Slide 14: Solving for d cap L o s s over denominator , d cap W to the , open paren 2 close paren end superscript , end denominator
	Slide 15: Solving for d cap L o s s over denominator , d cap W to the , open paren 1 close paren end superscript , end denominator
	Slide 16: Aside: what are these terms?
	Slide 17: Building the model + backprop: in code
	Slide 18: What is this *_cache?
	Slide 19: Example: relu cache
	Slide 20: Example: relu cache
	Slide 21: Common layer recipies
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

