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Announcements

• HW01: Updated deadline

• Old: Tues Oct 1st, 11:59 PM PST

• New: Tues Oct 8th, 11:59 PM PST

• Tip: you'll find this week's discussion (Week 05) very helpful for HW01.

• Keep asking questions on Ed and office hours
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Today's lecture

• Deeper dive into the backpropagation algorithm, and how it connects to code

• (Useful for HW01!)



Tip: partial derivative shapes

• When you see a symbol like: 

𝑑𝑧

𝑑𝑎

Suppose z has shape=[n], 

and a has shape=[m]

Shape=[dim(a), dim(z)] => [m, n]

This is "denominator" convention, as the shape is 

[dim(denominator), dim(numerator)]

𝑑𝐿𝑜𝑠𝑠

𝑑𝑧
Shape=[dim(z), 1] => [m, 1] Since our Loss is a scalar

𝑑𝑧

𝑑𝑊

Variant 1(flatten W matrix into a vector): 

Shape=[dim(W), dim(z)] => [m*n, dim(z)]

Suppose W is a matrix with 

shape=[n,m]

Depending on your computation, one 

view may be easier than another

Variant 2 (no flattening, work with tensors): 

Shape=[n, m, dim(z)]

Tip: When working with partial 

derivatives (eg debugging 

HW01 code), it's really helpful

to keep track of what all the 

shapes should be

Tip: for our backprop calculations, multiplying 
𝑑𝑧

𝑑𝑊

𝑑𝐿

𝑑𝑧

means multiplying a matrix with shape=[dim(W), dim(z)] 

with a vector with shape=[dim(z), 1]. Eg flatten dz/dW!



Chain rule for neural networks

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

A neural network is just a composition of functions

So we can use chain rule to compute gradients!



Chain rule and `backwards()`

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

Gradient of 

Linear(1) 

output wrt

params W

Grad. of 

Sigmoid wrt

inputs z(1)

Grad. of 

Linear(2) wrt

inputs a(1)

Grad. of 

Loss wrt

inputs z(2)

Aka: decompose what we want (
𝜕𝐿𝑜𝑠𝑠

𝜕𝑊(1)) into terms 

that are local calls to a layer's `backwards()` 

function (eg in HW01).

def layer_backwards(dout, cache):
# Given: dout (upstream, loss w.r.t. layer's outputs)
# Compute two things:
# (1) Gradient of loss w.r.t. layer's inputs
#    Tip: typically done by computing d_output_d_input
#      and multiplying with dout
# (2) Gradient of loss w.r.t. layer parameters (if any, 

ex Relu has no trainable params)
...

Insight: rather than (laboriously) compute gradients for all trainable 

parameters, instead define backwards() for each of your layers that 

follows the above interface, and backpropagation will "do the right 

thing" (aka chain rule) to get you the gradients you need!

One view:



Does it work?

We can calculate each of these Jacobians!

Example:
Why might this be a bad idea?

[n_c x 1][m x n_c][m x m][|W| x m][|W| x 1]

or [m x m], if 

W.shape=[m,m]

|W|: num elements in param matrix W

m: hidden dimensionality

n_c: num target classes (assuming 

classification)

Shapes: 

(depends if you like working with tensors or matrices)

Tip: this is "denominator" convention



Doing it more efficiently

this is always true because 
the loss is scalar-valued!

Idea: start on the right



The backpropagation algorithm
“Classic” version

softmax
sigmoid

layer

linear
layer

sigmoid
layer

sigmoid
layer

2x1

Tip: δ is `dout` in HW01

𝑑𝑓

𝑑𝜃𝑓
: Deriv. of layer output w.r.t.

layer parameters 𝜃𝑓 (if any)

𝑑𝑓

𝑑𝑥𝑓
: Deriv. of layer output w.r.t.

layer inputs 𝑥𝑓



Backprop (pseudocode)
from typing import Dict
import numpy as np

def backprop_pseudocode(
model, x: np.ndarray, 
targets: np.ndarray) -> Tuple[float, Dict[int, np.ndarray]]:

#### Forwards ####
forward_outs = []
cur_x = x
# For simplicity: assume model is just a single path, no branches
for layer in model.layers:

out, cache = layer.forward(cur_x)
forward_outs.append((out, cache))
cur_x = out

# Assume that final cur_x is the logits
logits = cur_x
loss, d_loss_d_logits = model.softmax_loss(logits, targets)

#### Backwards ####
d_loss_d_cur_outputs = d_loss_d_logits
grads = {} # map layer index to their d_loss_d_param gradients
# Begin: backpropagation algorithm
# iterate in reverse layer order (starting at layer before loss)
for i, layer in enumerate(model.layers[::-1]):

ind_layer = len(model.layers) - i - 1
cache = forward_outs[ind_layer][1]
d_loss_d_cur_inputs, d_loss_d_params = layer.backward(

d_loss_d_cur_outputs, cache)
grads[ind_layer] = d_loss_d_params
# current layer's inputs becomes outputs of the previous layer
d_loss_d_cur_outputs = d_loss_d_cur_inputs

return loss, grads

d_loss_d_params layer.backward() 

computes this product

d_loss_d_cur_outputs

layer.backward() computes this 

product: d_loss_d_cur_inputs

d_loss_d_logits
d_loss_d_cur_outputs

Connecting the previous math 

equations to our code

d_loss_d_cur_outputs
(pre overwrite)



Let’s walk through it…

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

Calling linear_backwards() gives us: 
𝑑𝑓

𝑑𝜃𝑓
(aka 

𝑑𝑧(2)

𝑑𝑊(1), 
𝑑𝑧(2)

𝑑𝑏(1)
), and 

𝑑𝑓

𝑑𝑥𝑓
(aka 

𝑑𝑧(2)

𝑑𝑎(1)
)



Building the model + backprop: in code

Network Architecture: Linear -> Relu -> Linear -> SoftMax -> CrossEntropyLoss

Model parameters ("trainable parameters"):

Question: what are the model parameters?

Answer: Each Linear layer has their own weight, bias 

parameters.

Thus, with two Linear layers, we have two Weight 

matrices, and two bias vectors.

Suppose we have d input features, n_c target classes, 

and we want the intermediate activations ("hidden dim") to 

have dimensionality h.

Question: what are the shapes of each Linear layer's 

weight, bias?

Answer: 

Linear(1): Weight.shape=[d, h], bias.shape=[h]

Linear(2): Weight.shape[h, n_c], bias.shape=[n_c]

# Tip: randomly init weight via normal dist (0 mean, 1.0 
var)
# Init bias to be all 0's
weight1 = np.random.normal(0, 1.0, size=(d, h))
bias1 = np.zeros(h)

weight2 = np.random.normal(0, 1.0, size=(h, n_c))
bias2 = np.zeros(n_c)

# x.shape=[1, d], weight1.shape=[d, h], bias1.shape=[h]
# matmult-ing a [1, d] with a [d, h] => [1, h]
# => out1.shape=[1, h]
out1 = x.dot(weight1) + bias1

# weight2.shape=[h, n_c], bias2.shape=[n_c]
# matmult-ing a [1, h] with a [h, n_c] => [1, n_c]
# => out2.shape=[1, n_c]
out2 = out1.dot(weight2) + bias2



Forward, backwards (in code)

Network Architecture: Linear -> Relu -> Linear -> SoftMax -> CrossEntropyLoss
# x.shape=[batchsize, d]
# target_classe.shape=[batchsize]
# Forward
out1, affine1_cache = affine_forward(x, weights1, bias1)
out1, relu_cache = relu_forward(out1)
logits, affine2_cache = affine_forward(out1, weights2, bias2)

# Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_loss_d_affine2_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_loss_d_relu_inputs = relu_backward(d_loss_d_affine2_inputs, 
relu_cache)
d_loss_d_affine1_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_loss_d_relu_inputs, affine1_cache)

grads = {
'W1': d_loss_d_w1, 'b1': d_loss_d_b1, 
'W2': d_loss_d_w2, 'b2': d_loss_d_b2,

}



Solving for 
𝑑𝐿𝑜𝑠𝑠

𝑑𝑊(2)

𝑑𝑓

𝑑𝑥𝑓
: Deriv. of layer output w.r.t. layer input

𝑑𝑓

𝑑𝜃𝑓
: Deriv. of layer output w.r.t. layer parameters (if any)

# Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_loss_d_affine2_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_loss_d_relu_inputs = relu_backward(d_loss_d_affine2_inputs, relu_cache)
d_loss_d_affine1_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_loss_d_relu_inputs, affine1_cache)

𝑑_𝑙𝑜𝑠𝑠_𝑑_𝑙𝑜𝑔𝑖𝑡𝑠

d_loss_d_logits

(`dout` in 

affine_backward())

Product is computed 

in affine_backward()

Shape: [h, n_c]



Solving for 
𝑑𝐿𝑜𝑠𝑠

𝑑𝑊(1)

𝑑𝑓

𝑑𝑥𝑓
: Deriv. of layer output w.r.t. layer input

𝑑𝑓

𝑑𝜃𝑓
: Deriv. of layer output w.r.t. layer parameters (if any)

# Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_loss_d_affine2_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_loss_d_relu_inputs = relu_backward(d_loss_d_affine2_inputs, relu_cache)
d_loss_d_affine1_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_loss_d_relu_inputs, affine1_cache)

𝑑_𝑙𝑜𝑠𝑠_𝑑_𝑙𝑜𝑔𝑖𝑡𝑠

`d_loss_d_logits`

`d_loss_d_affine2_inputs`

`d_loss_d_relu_inputs`

`d_loss_d_w1`

https://simpsons.fandom.com/wiki/Woo-hoo!?file=Woo_hoo%21_poster.jpg

https://simpsons.fandom.com/wiki/Woo-hoo!?file=Woo_hoo%21_poster.jpg


Aside: what are these terms?

`d_loss_d_logits`

`d_loss_d_affine2_inputs`

`d_loss_d_relu_inputs`

`d_loss_d_w1`

𝑑𝐿𝑜𝑠𝑠

𝑑𝑎(1)
=

𝑑𝑧(2)

𝑑𝑎(1)
𝑑𝐿𝑜𝑠𝑠

𝑑𝑧 2

2x1 3x1

linear
layer

relu

3x1

linear
layer

softmax
cross-ent

loss

𝑑𝐿𝑜𝑠𝑠

𝑑𝑧(1)
=
𝑑𝑎(1)

𝑑𝑧(1)
𝑑𝑧(2)

𝑑𝑎(1)
𝑑𝐿𝑜𝑠𝑠

𝑑𝑧 2

𝑑𝐿𝑜𝑠𝑠

𝑑𝑊(1)
=

𝑑𝑧(1)

𝑑𝑊(1)

𝑑𝑎(1)

𝑑𝑧(1)
𝑑𝑧(2)

𝑑𝑎(1)
𝑑𝐿𝑜𝑠𝑠

𝑑𝑧 2

(By Chain Rule)

(By Chain Rule)

(By Chain Rule)

Intuition: This (backprop) works so nicely because

(1) Chain rule naturally decomposes into terms for each layer, and

(2) We can easily (and efficiently!) compute the gradients of each layer 

with respect to their input(s) and their layer parameters (if any)

Important caveat: your layers must be 

differentiable w.r.t. inputs and parameters! If 

not, then you can't train with them (aka 

"backprop through" them).

Aside: sometimes if your function is "almost" 

differentiable (eg Relu at 0), you can get away 

with using subgradients.



Building the model + backprop: in code

𝑑𝑓

𝑑𝑥𝑓
: Deriv. of layer output w.r.t. layer input

𝑑𝑓

𝑑𝜃𝑓
: Deriv. of layer output w.r.t. layer parameters (if any)

# Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_loss_d_affine2_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_loss_d_relu_inputs = relu_backward(d_loss_d_affine2_inputs, relu_cache)
d_loss_d_affine1_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_loss_d_relu_inputs, affine1_cache)

𝑑_𝑙𝑜𝑠𝑠_𝑑_𝑙𝑜𝑔𝑖𝑡𝑠

`d_loss_d_logits`

`d_loss_d_affine2_inputs`

`d_loss_d_relu_inputs`

`d_loss_d_w1`

Note how there is a "chain" that 

links each backwards() call, 

starting with `d_loss_d_logits`. 

This matches up with the following 

update equation and the above 

right-to-left reduction:



What is this *_cache?

# x.shape=[batchsize, d]
# target_classes.shape=[batchsize]
# Forward
out1, affine1_cache = affine_forward(x, weights1, bias1)
out1, relu_cache = relu_forward(out1)
logits, affine2_cache = affine_forward(out1, weights2, bias2)

# Backwards
loss, d_loss_d_logits = softmax_loss(logits, target_classes)
d_affine2_d_inputs, d_loss_d_w2, d_loss_d_b2 = affine_backward(

d_loss_d_logits, affine2_cache)
d_relu_d_inputs = relu_backward(d_affine2_d_inputs, relu_cache)
d_affine1_d_inputs, d_loss_d_w1, d_loss_d_b1 = affine_backward(

d_relu_d_inputs, affine1_cache)

Implementation detail: many 

*_backwards() functions needs to 

know information from the *_forwards() 

function. 

Ex: affine_backwards() needs to know 

the original input to affine_forwards() to 

calculate d_loss_d_w, etc.

In HW01, the 

*_forwards()/*_backwards() functions 

will make it clear what you need to put 

in the caches.



Example: relu cache

Relu backward:

To compute the gradient, relu_backward() needs to 

know the indices where the relu_forward(x) inputs 

were positive.

Relu forward:

Implementation Idea: let's have 

relu_forward(x) emit not only the relu

output, but also any additional info that 

relu_backwards() may need, aka a "cache": relu_out, relu_cache = relu_forward(x)
...
bkwd_out = relu_backward(dout, relu_cache)

Ex: `relu_cache` contains the 

indices where x is positive



Example: relu cache

def relu_forward(x: np.ndarray) -> Tuple[np.ndarray, Dict[str, Any]]:
# mask_positive: shape=x.shape, True/False entries
mask_positive = x > 0
out = np.copy(x)
out[~mask_positive] = 0
cache = {"x_mask_positive": mask_positive}
return out, cache

def relu_backward(dout: np.ndarray, cache: Dict[str, Any]) -> np.ndarray:
x_mask_positive = cache["x_mask_positive"]
# np.where(...) turns the bool mask into an int 0/1 mask
dx = dout * np.where(x_mask_positive, 1, 0)
return dx

Relu backward:Relu forward:

Note: In HW01, the cache is 

implemented as a tuple, not as a dict, 

but the same idea holds

Store positive indices of input x...

...so that backwards() can use it!



Common layer recipies

• Recall that, when defining a new NN layer to use in backpropagation, we must 
compute the loss with respect to (1) the layer's inputs, and (2) the layer's 
trainable parameters (if any)

• Here are steps on how to derive (1) and (2) for some common layers

• Some general tips on doing this yourself

• Try writing out the scalar terms, and see if you can identify a pattern that lets 
you "generalize" to the final vector (or matrix!) 

• Sanity check matrix/vector shapes to make sure things are right!



Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)

[m x k x dim(z)]

[m x k]

[dim(z) x 1]

Aka: dz_dw[:, :, 2], shape=[m, k]

Neat trick: much easier to compute this 

than explicitly forming 
𝑑𝑧

𝑑𝑊



Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)

Interpretation: if I change my bias b_i

term by +1, then I expect the output 

z_i to also change by +1.



Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)

[dim(z) x 1]
[dim(a) x dim(z)]

W.shape=[dim(z), dim(a)]
In more detail:

(Using "denominator" format)

# Let dz_da.shape=[dim(a), dim(z)]

dz_da[k, :] = W[:, k]  # by (1)

Aka: k-th row of dz_da is the k-th column 

of W

=> dz_da is W.T
(1)



Backpropagation recipes: linear layer

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

(just to simplify notation!)



Backpropagation recipes: sigmoid

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss



Backpropagation recipes: ReLU

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

Interpretation: only the positive entries of 

the Relu input contribute to the gradient.

Question: suppose during a training iteration all of the outputs of this Relu are 0 

(eg all Relu inputs were negative). What happens during this training iteration?

Answer: All of the layers preceding this Relu will have 0 gradients, meaning that 

their trainable parameters will not get updated at all. 

Question: can the model ever hope to "recover" from this dead Relu? What are 

some migitations we can do to avoid this "dead neuron" issue?

Answer: Hope that other batches will "kick" the dead neuron out of the dead 

negative region. Mitigations: leaky Relu, Gelu, careful weight initialization



Summary

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss
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