
Speaker: Eric Kim

Lecture 06: Neural network building
blocks
Data C182 (Fall 2024). Week 04. Tuesday Sept 17th, 2024

1

Announcements

• Add/drop deadline: Wednesday September 18th

• "Course recommended prerequisites": [link]

2

https://edstem.org/us/courses/64085/discussion/5289356

HW01: Google Colab!

• Important update: you can now do HW01 on Google Colab! [link]

• If you're having trouble with setting up your machine (eg installing Docker), then I
recommend going with Colab

• Reasons to go with Colab

• Easier setup

• Possibly better compute available (depends on how powerful your laptop is)

• Access to GPUs (possibility: education GPU credits!)

• Note: if local setup works fine for you (eg Docker), then feel free to continue using
that if you prefer.

• Fun fact: this lecture covers much of HW01 (FullyConnected, BatchNorm, DropOut)

• Thursdays lecture will cover the remainder of HW01 ("ConvNets")

https://edstem.org/us/courses/64085/discussion/5293723

Overview

• Pytorch quick intro

• torch.Tensor, torch.nn.Module

• torch.nn.Linear

• Two-layer NN in pytorch

• Standardization/Normalization

• Batch Norm, Layer Norm

• Activation Functions, Skip Connections

• Weight Initialization, Dropout, Data Augmentation, Model Ensembling

pytorch

• Deep learning library (Python)

• Initial release: 2016

• Pytorch 2.0: 2023

• Developed by Meta

• libtorch: a C++ runtime env useful for serving
torchscript models in production

• Main idea: make ML experimentation as easy and
flexible as possible ("dynamic/eager" execution, vs
"static" computation approach taken by Tensorflow 1.0)

• Widely used in both industry and academia for both
training and serving DNN models.

torch.Tensor

• "Fundamental datatype": torch.Tensor

• "Multidimensional array"

• Vector: shape=[N]

• Matrix: shape=[N, M]

• N-dim array: shape=[d_0, d_1, ..., d_N]

• Aka "Tensor" (but not in the physics-y mathematically sense)

• Similar in spirit to: numpy.ndarray,
pandas.DataFrame

• Docs:
https://pytorch.org/docs/stable/tensors.html

https://aadhil-imam.medium.com/introduction-pytorch-tensors-tutorial-01-9dca5b4a1590

https://pytorch.org/docs/stable/tensors.html
https://aadhil-imam.medium.com/introduction-pytorch-tensors-tutorial-01-9dca5b4a1590

torch.Tensor properties

• Shape

• Ex: a matrix with 2 rows and 3
columns has shape [2, 3]

• Data type

• Ex: torch.float32, torch.int32,
torch.float16

• Tip: it's common to train/serve in
reduced precision for improved
performance (eg torch.float16,
bfloat16)

• Device (aka "CPU" vs "GPU")

a matrix with shape=[2, 3] (2 rows, 3 columns)
>>> my_matrix = torch.tensor(

[
[1, 2, 3],
[4, 5, 6],

],
dtype=torch.float32

)
>>> print("my_matrix: ", my_matrix)
my_matrix: tensor([[1., 2., 3.],

[4., 5., 6.]])
>>> print("my_matrix.shape: ", my_matrix.shape)
my_matrix.shape: torch.Size([2, 3])

Operations with torch.Tensor

• Arithmetic operations with Tensors (+, -, *, /)

• Assignment

• Indexing/slicing

• Dot products, matrix multiply

• [DEMO: tensor_demo.py, two_layer_linear_nn_demo.py]

Today’s lecture

• Today’s lecture is the “collected wisdom” of techniques, tips, and tricks for how to
build and train the best neural networks

• We focus on techniques that have “stood the test of time”

• Normalization, activations, weight initialization, hyperparameter optimization, …

• Nevertheless, new and better techniques are introduced all the time

• The best deep learning practitioners and researchers typically are also the best
at keeping up with the latest trends

9

Standardization and normalization

10

Some motivation for input standardization

• Suppose the input 𝐱 is 2D and 𝑥1 is usually much larger than 𝑥2 — what could go wrong?

• Adjusting the part of 𝜃 corresponding to 𝑥2 may have a bigger effect on the loss

• We saw that momentum and Adam can suffer less from issues like oscillation

• Compared to vanilla gradient based optimization

• Nevertheless, standardization of the input dimensions
is typically an important preprocessing step and
never hurts performance

• Think of it like helping to “circularize” the loss landscape

11

Input standardization

• Input standardization is carried out for each dimension of the input separately

• For each training input, for each dimension 𝑑, we subtract the mean 𝜇𝑑 =

1

𝑁
∑
𝑖=1

𝑁

𝑥𝑑 and divide by 𝜎𝑑 =
1

𝑁
∑
𝑖=1

𝑁

(𝑥𝑑 − 𝜇𝑑)
2

• Ex: if an input feature is "User's Age", then we'd preprocess the "age" column via:
new_age = (age - age_mean) / (age_std).

• Network now reasons in terms of "how many std-devs is the input age from the
mean?" instead of "raw age units"

12

Motivation for standardizing features

• Question: why might we want our input features to be standardized?

• Hint: consider if input feature x_0 is REALLY large in magnitude relative to input
feature x_1. Consider a Linear layer with weight A (no bias for now):

13

𝐴00 𝐴01 𝐴02
𝐴10 𝐴11 𝐴12

𝑥0 𝑥1

= 𝐴00 ∗ 𝑥0 + 𝐴10 ∗ 𝑥1 𝐴01 ∗ 𝑥0 + 𝐴11 ∗ 𝑥1 𝐴02 ∗ 𝑥0 + 𝐴12 ∗ 𝑥1

BIG small

BIG small

Linear forward

pass:

Issue 1: layer outputs are dominated by x_0. If x_1 were important to the

final model outputs (eg classifications), then it's "washed away".

Motivation for standardizing features

• Question: in theory, can the NN learn to rescale x_0, x_1 so that they're at a
comparable magnitude? Suppose x_0 is typically 1000x larger in magnitude than
x_1. What would the resulting weight matrix A look like?

14

𝐴00 𝐴01 𝐴02
𝐴10 𝐴11 𝐴12

𝑥0 𝑥1

= 𝐴00 ∗ 𝑥0 + 𝐴10 ∗ 𝑥1 𝐴01 ∗ 𝑥0 + 𝐴11 ∗ 𝑥1 𝐴02 ∗ 𝑥0 + 𝐴12 ∗ 𝑥1

BIG small

BIG small

Linear forward

pass:

Answer: A_00, A_01, A_02 (first row of A) should be

roughly 1000x smaller than A_10, A_11, A_12.

[DEMO normalization_motivation.py linear_demo()]

0.001 0.001 0.001
1 1 1

Motivation for standardizing features

• Although the NN can in theory learn to figure out scale difference, a common NN
technique is to make the learning problem as easy as possible.

• In this case: standardizing input features so that they're in the same "general
range" so that the NN doesn't have to learn scale differences.

15

1𝑒9 0.01
1.2𝑒9 0.03
1.1𝑒9 0.01
… …

0.1 0.2
0.3 0.5
0.2 0.2
… …Standardize

Input features
Input features

("standardized")

Input standardization

• There are some variations on this,
e.g., this is usually done per
channel for image inputs rather
than per dimension

• And for discrete inputs, such as in
language (eg token IDs), this is
typically not done at all

16

https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km

https://vaclavkosar.com/ml/Tokenization-in-Machine-Learning-Explained

NLP: tokenizer outputs are typically int IDs, eg

ID=2023 corresponds to "This", ID=2003 corresponds

to "is". Doesn't make sense to standardize these.

https://dev.to/sandeepbalachandran/machine-learning-going-furthur-with-cnn-part-2-41km
https://vaclavkosar.com/ml/Tokenization-in-Machine-Learning-Explained

A few more comments on standardization

• The far more common (but incorrect) term for standardization is normalization

• For the rest of this lecture and beyond, we will use this term instead

• Beyond normalizing inputs, outputs are often also normalized if they are
continuous values (but not if they are discrete values such as labels)

• Just like normalizing inputs, think of it like “circularizing” the loss landscape

• Maybe we can also consider… normalizing intermediate activations 𝐳(𝑙) or 𝐚(𝑙)?

• What might be trickier about this?

17

Normalizing intermediate activations

• Activations change throughout the course of training!

• This means that we have to recompute these normalization statistics (𝜇𝑑 and

𝜎𝑑) every time we update our neural network parameters

• And it would be prohibitively expensive to recompute using all the training data

• Let’s discuss the two most commonly used methods for normalizing activations
that get around this issue by using only mini batches or single data points

• These are batch normalization (BN) and layer normalization (LN),
respectively

18

Batch normalization (BN)

• Consider normalizing the intermediate activation 𝐳(𝑙) (same story for 𝐚(𝑙))

• Recall that, during training, we use mini batches of 𝐵 data points for each update

• We can compute the per dimension mean and standard deviation of 𝐳(𝑙) using
just this mini batch, rather than the entire training set

• This should be a good approximation for large enough 𝐵 and if the points in the
mini batch are sampled i.i.d. (they’re not, but close enough)

• BN refers to normalizing 𝐳(𝑙) using these mini batch statistics

19

The BN “layer”

• Typically, we normalize either the 𝐳(𝑙) or the 𝐚(𝑙), but not both

• We can think of this as putting a BN “layer” either before or after the nonlinearity

• Both choices usually work, it is usually easy enough to try both

• The BN layer also includes one more thing: learnable scale and shift parameters

• That is, after normalization, we multiply each dimension by 𝛾𝑑 and add 𝛽𝑑
• This is done so that the neural network doesn’t lose expressivity — if needed, it

could even learn to undo the normalization!

20

BN: training vs. testing

• Models with BN layers operate in two different modes: “train” vs. “test” or “eval”

• These are used during training and testing time, as the names suggest

• Train mode is what has been described — compute statistics using the mini batch

• Eval mode instead uses the average statistics computed during train time

• That is, we additionally maintain an exponential running average of the normalization
statistics during model training, for use at test time

• This is important if, e.g., we only are able to see one test point at a time

• Otherwise, the normalization, scaling, and shifting work identically in both modes

21

The pros and cons of BN

• BN enables higher learning rates and therefore faster training

• BN fixes many of the training stability issues that people used to worry about

• Before BN, this course would have talked a lot more about these issues

• But BN also requires a large enough 𝐵 for a good estimate of the statistics

• It’s also kind of weird that the model works differently for training vs. testing…

• It’s also kind of weird, at training time, for the model’s predictions on a data point
to depend on the other points in the mini batch…

• [DEMO batch_norm_demo.py]

22

Layer normalization (LN)

• LN is a different normalization approach that does not use mini batch information

• So it operates on single data points, and it is identical at training vs. test time

• LN is basically the “transpose” of BN: compute the mean and standard deviation

of 𝐳(𝑙) across the feature dimensions, rather than per dimension

• Now, each data point will have different normalization statistics, but these
statistics are shared across dimensions

• We still have learnable scale and shift parameters that are applied after the
normalization step, to produce the final output of the LN layer

• [DEMO layer_norm_demo.py]

23

Network architecture choices

24

Nonlinearities — rectified linear units (ReLUs)

• ReLU(𝐯) = 𝑚𝑎𝑥{0, 𝐯} = 𝐯⊙ 𝟏[𝐯 > 0]

• Therefore, 𝛻𝐯ReLU(𝐯) = diag(𝟏[𝐯 > 0])

• A very common choice for hidden layer activations

• “Gates” inputs based on their sign

• May be suboptimal because, for negative values,
the gradient provides no update direction

25

Nonlinearities — sigmoid

• sigmoid(𝐯) =
1

1+exp{−𝐯}
=

exp{𝐯}

exp{𝐯}+1

• Along with tanh, has really fallen out of favor as
a hidden layer activation

• Why? Very small gradient values for large inputs

• 𝛻𝐯sigmoid(𝐯) = diag(sigmoid(𝐯) ⊙
(1 − sigmoid(𝐯)))

• Used as the output “activation” for binary
classification

26

Nonlinearities — Gaussian error linear units

• GELUs (and friends)

• Both ReLUs and sigmoids have gradient issues

• Another function that sidesteps some of these
issues is the Gaussian error linear unit (GELU)

GELU(𝐯) = 𝐯⊙Φ(𝐯)

• Φ evaluates the CDF of 𝒩(0,1) element wise

• Closely related to other functions that pass the

input through a “soft gate” — e.g., 𝐯⊙
sigmoid(𝐯) is quite similar (sometimes called

SiLU or swish)

27

Comparing these nonlinearities

• Both sigmoid and ReLU are non negative and
monotonically non decreasing

• sigmoid and GELU are smooth, which is sometimes
important from an optimization perspective

• sigmoid is historically an important activation but
is rarely the only nonlinearity used in today’s
neural networks

28

Skip connections

• Basically every state-of-the-art neural network uses skip connections

• Very simple high level idea: 𝐚(𝑙) = 𝜎(𝐳(𝑙)) + 𝐚(𝑙−1), rather than just 𝐚(𝑙) =
𝜎(𝐳(𝑙))

• This idea was popularized by residual
convolutional networks (ResNets)

• Allowed for training much deeper,
more performant models

• The loss “landscape” of neural networks
with residual connections looks much nicer

29

Li et al, NIPS ’18 Li et al, NIPS ’18

Training considerations

30

Weight initialization

link

• What should we initialize our neural network parameters (weights) to? This question is less important
with the advent of BN and LN, but it is still interesting to think about

• If 𝑥𝑗 ∼ 𝒩(0,1) in each dimension 𝑗, and we initialize each 𝐖𝑖𝑗
(1)

∼ 𝒩(0, 𝜎𝑊
2)…

• …then we get 𝔼[𝑧𝑖
2] = ∑𝑗𝔼[(𝐖𝑖𝑗

(1)
)2]𝔼[𝑥𝑗

2] = 𝑑𝜎𝑊
2

• Therefore, picking 𝜎𝑊
2 =

1

𝑑
 gives us outputs similar in magnitude to the inputs

• We can do this at every linear layer, i.e., initialize each 𝐖(𝑙) with variance inversely proportional to
the input dimensionality to that layer

• In practice: it’s slightly more complicated, but it’s done for you by deep learning libraries

• Ex: see pytorch's weight initialization strategies: [link]

31

• A thought exercise

https://pytorch.org/docs/stable/nn.init.html

Dropout

• Often, dropout is applied to our model
during training

• The basic idea is: randomly disable ("drop
out") neurons in the network.

• Implementation: randomly zero out some

fraction 𝑝 of the 𝐖𝑖𝑗

• Can implement as element wise

multiplication of each 𝐖(𝑙) with a
boolean mask

32

Dropout

• Dropout builds redundancies into the model,
such that it doesn’t rely too much on any
particular “pathways” through the network

• Yet another example of inductive biases at
work!

• Can be thought of as a form of regularization
specific to NN's.

• Some care should be taken to make training
vs. test output magnitudes consistent

• Ex: if drop probability is 0.8, then at test time,
multiply activations by (1 / (1 - 0.8)) = 5

33

Data augmentations, briefly
• For some problems, data augmentations are an indispensable part of training

• E.g., for image classification: we apply random flips and crops to the images

• This is useful for encoding invariances, e.g., flipping and
cropping do not change the image class

• Another inductive bias!

• For some domains, such as natural language, it is harder to come up with good
data augmentation schemes

34
https://viso.ai/computer-vision/image-data-augmentation-for-computer-vision/

https://viso.ai/computer-vision/image-data-augmentation-for-computer-vision/

Neural network ensembles

• If you have enough compute, training multiple neural networks is often useful

• Same concept as bagging for other machine learning models — an ensemble of models
reduces variance and combats overfitting

• Turns out, also very good at uncertainty quantification

• In theory: create different bootstrap samples of the dataset to train the models

• In practice for neural networks: just train them all on all of the data

• In theory: when predicting, average all of their output probabilities together

• In practice: just take a majority vote

35

Hyperparameter optimization

• We briefly talked last lecture about tuning hyperparameters such as learning rate,
momentum, regularization strength, etc.

• Training loss helps diagnose underfitting, validation loss for overfitting

• We are adding in even more hyperparameters to tune with this lecture!

• Normalization, architecture choices (nonlinearities, skip connections), dropout,
…

• It is definitely daunting to try and tune all of these — here are some tips

36

Hyperparameter optimization

• Typically, tuning hyperparameters goes from “coarse to fine”

• E.g., first find the right order of magnitude for the learning rate, then zero in

• Hyperparameter search can be done with randomly sampled values or in a grid

• When grid searching, it is standard to space values evenly in log space

• For example, to cover [0.001, 0.01] approximately evenly, use:

• [0.001, 0.003, 0.01] if grid searching with three values

• [0.001, 0.002, 0.005, 0.01] if grid searching with four values

• Putting it all together: [DEMO: two_layer_nn_bells_and_whistles.py]

37

	Slide 1: Lecture 06: Neural network building blocks
	Slide 2: Announcements
	Slide 3: HW01: Google Colab!
	Slide 4: Overview
	Slide 5: pytorch
	Slide 6: torch.Tensor
	Slide 7: torch.Tensor properties
	Slide 8: Operations with torch.Tensor
	Slide 9: Today’s lecture
	Slide 10: Standardization and normalization
	Slide 11: Some motivation for input standardization
	Slide 12: Input standardization
	Slide 13: Motivation for standardizing features
	Slide 14: Motivation for standardizing features
	Slide 15: Motivation for standardizing features
	Slide 16: Input standardization
	Slide 17: A few more comments on standardization
	Slide 18: Normalizing intermediate activations
	Slide 19: Batch normalization (BN)
	Slide 20: The BN “layer”
	Slide 21: BN: training vs. testing
	Slide 22: The pros and cons of BN
	Slide 23: Layer normalization (LN)
	Slide 24: Network architecture choices
	Slide 25: Nonlinearities — rectified linear units (ReLUs)
	Slide 26: Nonlinearities — sigmoid
	Slide 27: Nonlinearities — Gaussian error linear units
	Slide 28: Comparing these nonlinearities
	Slide 29: Skip connections
	Slide 30: Training considerations
	Slide 31: Weight initialization
	Slide 32: Dropout
	Slide 33: Dropout
	Slide 34: Data augmentations, briefly
	Slide 35: Neural network ensembles
	Slide 36: Hyperparameter optimization
	Slide 37: Hyperparameter optimization

