
Speaker: Eric Kim

Lecture 04: Neural network basics
Data C182 (Fall 2024). Week 03. Tuesday Sept 10th, 2024

1 Revision 01: 2024-09-10

Announcements

• Welcome to Week 03!

• HW01 released, due Oct 1st!

• MacOS/Windows: please use Docker to handle setting up the environment (eg
installing packages/dependencies). See this Ed post for more details: [link]

• Linux: feel free to either install the deps yourself, or you can also use Docker

• Reminder: submit assignments via Gradescope [link]

• Tip: If you're having trouble getting setup for HW01, please ask in Ed or attend
office hours.

https://edstem.org/us/courses/64085/discussion/5228782
https://www.gradescope.com/courses/837491

Office hours, discussions

• Office hours are active this week! Full OH schedule: [link]

• Eric Kim OH: Wednesdays, 3PM – 4 PM [Zoom link]

• Naveen Ashish OH: Wednesdays 1PM – 2PM (Zoom link TBD)

• Discussions active starting this week! Notes + solutions on website: [link]

• If you still aren't assigned to a discussion section, or you're unable to make
your assigned discussion section (eg due to a conflict), please fill out the "2.0"
Google Form in this Ed post: [link]

• Please raise any discussion section assignment issues in this Ed post: [link]

• Our aim is to get everyone assigned to a section by Week 04 (Sept 16th)

• That said: feel free to attend any discussion section you prefer. Seats are
reserved for those that are officially enrolled in that section.

https://datac182fa24.github.io/schedule/#office-hours
https://berkeley.zoom.us/j/99060101907
https://datac182fa24.github.io/#discussion-sections
https://edstem.org/us/courses/64085/discussion/5235258
https://edstem.org/us/courses/64085/discussion/5233505

Midterm

• Midterm: Thursday October 24th 2024 (Week 09), 6:30 PM – 8:00 PM

• In-person exam, pencil + paper.

• Physical location: TBD (likely 10 Evans + another location on campus)

• Alternate exam times will only be given for truly unavoidable, extraordinary
circumstances. If you truly can't make this midterm time with a good reason,
please write on Ed in a private post ASAP.

Today’s lecture

• Some of you may be thinking: “where are the deep neural networks??”

• Today, we’ll start talking about our first basic neural network models

• We’ll put a full model together in this lecture, mathematically and diagrammatically

• We will then work through the backpropagation algorithm for computing gradients
of the loss function with respect to the neural network parameters

• This algorithm relies on reusing gradient values and matrix-vector products

• Useful to learn and implement once (for the latter, HW1 has you covered)

5

Recall: logistic regression

• Setup: Multiclass classification. Suppose we have K classes ("multiclass", K > 2),
and each input sample consist of d input features

• Given 𝐱 ∈ ℝ𝑑 ,define 𝑓𝜃(𝐱) = 𝜃⊤𝐱 ,where 𝜃 is a 𝑑 × 𝐾 matrix

• Then, for class 𝑐 ∈ {0,… , 𝐾 − 1}, we have 𝑝𝜃(𝑦 = 𝑐|𝐱)
= softmax(𝑓𝜃(𝐱))𝑐

• Remember: softmax(𝑓𝜃(𝐱))𝑐 =
exp𝑓𝜃(𝐱)𝑐

∑𝑖=0
𝐾−1exp𝑓𝜃(𝐱)𝑖

• Loss function: ℓ 𝜃; 𝐱, 𝑦 = −log𝑝𝜃 𝑦 𝐱

6

• The “linear neural network”

For a nice review of logistic regression, and how to

generalize from binary classification to multiclass (K>2)

classification, see: [link]

https://people.tamu.edu/~sji/classes/LR.pdf

A diagram for logistic regression

• Often, we will simplify this
diagram:

• Omit the 𝜃 box, the
parameters are implicit
in the diagram

• Omit the layer box
entirely! Denote it with
just the arrow

• Omit the loss box at the
end, if we’re drawing
“just the model”

7

𝐱

“linear layer”

𝜃
𝐳

𝐱 𝐳

linear layer

𝑦

Another type of drawing: computation graphs

Computation graphs are more detailed, rigorous graphical representations

Pictured: the logistic regression model implemented as a series of mathematical
"primitive" operations.

you will see variations on the style of drawing, level of detail, etc.

8

Aside: modern deep learning frameworks "compile" network architectures into a

series of "primitive" operators (ex: Tensorflow/pytorch/Caffe/Caffe2). For a

glimpse of this, see the "Operators" catalogue for Caffe2: [link]

https://caffe2.ai/docs/operators-catalogue.html

Neural networks: attempt #1

• Our drawing of logistic regression suggests that it is a “single layer model”

• Are neural networks just more of these layers stacked on top of each other?

• What’s the issue with this?

• Composing linear transformations together is still linear!

9

𝐱 𝐳

linear layer

𝐱 𝐳(1)

linear layer

𝐳(2)

linear layer

…

Making neural networks nonlinear

• One of the main things that makes neural networks great is that they can
represent complex non linear functions

• How? The canonical answer: add nonlinearities after every linear layer

• Also called activation functions

• Basically always element wise functions on the linear layer output

• Examples: tanh(𝐳), sigmoid(𝐳) =
1

exp{−𝐳}+1
, ReLU(𝐳) = 𝑚𝑎𝑥{0, 𝐳}

10

Neural networks: attempt #2

11

𝐱 𝐳(2)

linear layer

…

𝐳(1)

linear layer

𝐚(1)

nonlinearity

𝐚(2)

nonlinearity

𝐱 𝐚(2)

nonlinear

layer

…

𝐚(1)

nonlinear

layer

𝐚(𝐿)

nonlinear

layer

𝐳

linear layer

To simplify the diagram, we often

"merge" the linear layer with the

nonlinear activation function

What function is this?

• 𝜃 represents all our parameters, e.g.,

[𝐖(1), 𝐛(1), … ,𝐖(𝐿), 𝐛(𝐿),𝐖final, 𝐛final]

• If our neural network has parameters 𝜃 and 𝐿 hidden layers, then it represents

the function 𝑓𝜃(𝐱) = softmax(𝐴final(𝜎(𝐴(𝐿)(…𝜎(𝐴(1)(𝐱))…))))

• 𝜎 is the nonlinearity / activation function

• 𝐴𝑖(𝐯) = 𝐖𝑖𝐯 + 𝐛𝑖 is the 𝑖-th linear layer

• What can this function represent? Turns out, a lot

12

Visualizing neural network functions

• https://playground.tensorflow.org/

13

https://playground.tensorflow.org/

Visualizing neural network functions

• https://playground.tensorflow.org/

14

https://playground.tensorflow.org/

Visualizing neural network functions

• https://playground.tensorflow.org/

15

https://playground.tensorflow.org/

Visualizing neural network functions

• https://playground.tensorflow.org/

16

https://playground.tensorflow.org/

Visualizing neural network functions

• https://playground.tensorflow.org/

17

https://playground.tensorflow.org/

The backpropagation algorithm

18

Remember: the machine learning method

1. Define your model

2. Define your loss function

3. Define your optimizer

4. Run it on a big GPU

19

• (or, at least, the deep learning method)

𝐱 𝐚(2)

…

𝐚(1) 𝐚(𝐿) 𝐳

ℓ(𝜃; 𝐱, 𝑦) = −log𝑝𝜃(𝑦|𝐱) (“cross-entropy”)

𝜃 ← 𝜃 − 𝛼𝛻𝜃
1

𝑁
∑
𝑖=1

𝑁

ℓ(𝜃; 𝐱𝑖 , 𝑦𝑖)

wait… we need gradients!

What gradients do we need?

• We want to update our parameters as 𝜃 ← 𝜃 − 𝛼𝛻𝜃
1

𝑁
∑
𝑖=1

𝑁

ℓ(𝜃; 𝐱𝑖 , 𝑦𝑖)

• 𝜃 represents all our parameters, e.g.,

[𝐖(1), 𝐛(1), … ,𝐖(𝐿), 𝐛(𝐿),𝐖final, 𝐛final]

• So we need [𝛻𝐖(1)ℓ, 𝛻𝐛(1)ℓ,… , 𝛻𝐖(𝐿)ℓ, 𝛻𝐛(𝐿)ℓ, 𝛻𝐖final
ℓ, 𝛻

𝐛final
ℓ]

• How do we compute these gradients? Let’s talk about two different approaches:

• numerical (finite differences) vs. analytical (backpropagation)

20

Finite differences

• The method of finite differences says that, for any sufficiently smooth function 𝑓

which operates on a vector 𝐱, the partial derivative
𝜕𝑓

𝜕𝑥𝑖
 is approximated by

•
𝜕𝑓

𝜕𝑥𝑖
≈

𝑓(𝐱+𝜖𝐞𝑖)−𝑓(𝐱−𝜖𝐞𝑖)

2𝜖
, where 𝐞𝑖 denotes a “one hot” vector

• This is the definition of (partial) derivatives as 𝜖 → 0

• Think about how slow this would be to do for all our network parameters…
Nevertheless, it can be useful as a method for checking gradients

21

Computing gradients via backpropagation

• The backpropagation algorithm is a much faster and more efficient method for
computing gradients for neural network parameters

• It made training large neural networks feasible and practical

• Backpropagation works “backward” through the network, which allows for:

• reusing gradient values that have already been computed

• computing matrix-vector products rather than matrix-matrix products, since the
loss is a scalar!

• It’s pretty confusing the first (or second, or third, …) time you see it

22

Backpropagation: the math

first, let’s do the “forward pass” through our network, from input to prediction

let’s work with two hidden layers, for concreteness

23

𝐱 𝐚(2)

nonlinear

layer

𝐚(1)

nonlinear

layer

𝐳

linear

layer

Backpropagation: the math

𝐳 = 𝐖final𝐚(2) + 𝐛final represents our "logits" (aka inputs to softmax)

24

𝐱 𝐚(2)

nonlinear

layer

𝐚(1)

nonlinear

layer

𝐳

linear

layer

Backpropagation: the math

first let’s look at 𝛻
𝐖final

ℓ and 𝛻
𝐛final

ℓ

remember: ℓ = log∑exp𝐳 − 𝐳𝑦𝑖 ,and also 𝐳 = 𝐖final𝐚(2) + 𝐛final

25

𝐱 𝐚(2)

nonlinear

layer

𝐚(1)

nonlinear

layer

𝐳

linear

layer

By multivariate chain rule: using the

matrix shape conventions defined

here: [link]

https://math.stackexchange.com/a/3724367

Backpropagation: the math
now let’s look at 𝛻𝐖(2)ℓ and 𝛻𝐛(2)ℓ

remember: 𝐚(2) = 𝜎(𝐳(2)), and also 𝐳(𝟐) = 𝐖(2)𝐚(1) + 𝐛(2)

a pattern emerges… do you see it?
26

𝐱 𝐚(2)

nonlinear

layer

𝐚(1)

nonlinear

layer

𝐳

linear

layer

How does the output of my layer

change w.r.t. my layer's

parameters?

How does the loss

change w.r.t. this layer's

outputs?

Observation: gradients for a given layer are functions of local

things (eg inputs to layer during forward pass, and how the

layer's outputs affect the loss gradient)

Suggests a dynamic-programming-like way to implement

backpropagation in a way that mirrors the computation graph

Aside: chain rule High-dimensional chain rule

Row or column?

In this lecture: In some textbooks:

Just two different conventions!

Slides from Prof. Sergey Levine's SP21 CS 182, Lecture 05: [link]

https://cs182sp21.github.io/

Chain rule for neural networks

2x1 3x1

linear
layer

sigmoid

3x1

linear
layer

softmax
cross-ent

loss

A neural network is just a composition of functions

So we can use chain rule to compute gradients!

Slides from Prof. Sergey Levine's SP21 CS 182, Lecture 05: [link]

https://cs182sp21.github.io/

Does it work?

We can calculate each of these Jacobians!

Example:
Why might this be a bad idea?

Slides from Prof. Sergey Levine's SP21 CS 182, Lecture 05: [link]

https://cs182sp21.github.io/

Doing it more efficiently

this is always true because
the loss is scalar-valued!

Idea: start on the right

Slides from Prof. Sergey Levine's SP21 CS 182, Lecture 05: [link]

https://cs182sp21.github.io/

The backpropagation algorithm
“Classic” version

softmax
sigmoid

layer

linear
layer

sigmoid
layer

sigmoid
layer

2x1

Slides from Prof. Sergey Levine's SP21 CS 182, Lecture 05: [link]

https://cs182sp21.github.io/

Backpropagation: the summary

• First, we perform a forward pass and cache all the intermediate 𝐳(𝑙), 𝐚(𝑙)

• Then, we work our way backwards to compute all the 𝛻𝐖(𝑙)ℓ, 𝛻𝐛(𝑙)ℓ

• Going backwards allows us to reuse gradients that have already been computed

• It also results in matrix-vector product computations, which are far more efficient
than matrix-matrix product computations

• After all the gradients have been computed, we are ready to take a gradient step

• Neural network optimization repeats this over and over — more on that next week

32

Confused?

• Backpropagation can be tricky and unintuitive

• What can help is trying to work out the math on your own to see the patterns

• Implementing it for HW1 should also help solidify the concept

• But, most importantly: we don’t have to do it ourselves these days!

• Deep learning libraries do it for us (ex: pytorch, tensorflow)

33

	Slide 1: Lecture 04: Neural network basics
	Slide 2: Announcements
	Slide 3: Office hours, discussions
	Slide 4: Midterm
	Slide 5: Today’s lecture
	Slide 6: Recall: logistic regression
	Slide 7: A diagram for logistic regression
	Slide 8: Another type of drawing: computation graphs
	Slide 9: Neural networks: attempt #1
	Slide 10: Making neural networks nonlinear
	Slide 11: Neural networks: attempt #2
	Slide 12: What function is this?
	Slide 13: Visualizing neural network functions
	Slide 14: Visualizing neural network functions
	Slide 15: Visualizing neural network functions
	Slide 16: Visualizing neural network functions
	Slide 17: Visualizing neural network functions
	Slide 18: The backpropagation algorithm
	Slide 19: Remember: the machine learning method
	Slide 20: What gradients do we need?
	Slide 21: Finite differences
	Slide 22: Computing gradients via backpropagation
	Slide 23: Backpropagation: the math
	Slide 24: Backpropagation: the math
	Slide 25: Backpropagation: the math
	Slide 26: Backpropagation: the math
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Backpropagation: the summary
	Slide 33: Confused?

