data
cl82

| ecture 04: Neural network basics

Data C182 (Fall 2024). Week 03. Tuesday Sept 10t, 2024

Speaker: Eric Kim

Revision 01: 2024-09-10

Announcements

. Welcome to Week 03!
- HWO1 released, due Oct 1stl

- MacOS/Windows: please use Docker to handle setting up the environment (eg
installing packages/dependencies). See this Ed post for more detalls: [link]

- Linux: feel free to either install the deps yourself, or you can also use Docker
- Reminder: submit assignments via Gradescope [link]

- Tip: If you're having trouble getting setup for HWO01, please ask in Ed or attend
office hours.

https://edstem.org/us/courses/64085/discussion/5228782
https://www.gradescope.com/courses/837491

Office hours, discussions

- Office hours are active this week! Full OH schedule: [link]
- Eric Kim OH: Wednesdays, 3PM — 4 PM [Zoom linK]
- Naveen Ashish OH: Wednesdays 1PM — 2PM (Zoom link TBD)

- Discussions active starting this week! Notes + solutions on website: [linkK]

- |t you still aren't assigned to a discussion section, or you're unable to make
your assigned discussion section (eg due to a conflict), please fill out the "2.0"
Google Form in this Ed post: [link]

- Please raise any discussion section assignment issues In this Ed post: [linkK]
. QOur aim is to get everyone assigned to a section by Week 04 (Sept 161)

- That said: feel free to attend any discussion section you prefer. Seats are
reserved for those that are officially enrolled in that section.

https://datac182fa24.github.io/schedule/#office-hours
https://berkeley.zoom.us/j/99060101907
https://datac182fa24.github.io/#discussion-sections
https://edstem.org/us/courses/64085/discussion/5235258
https://edstem.org/us/courses/64085/discussion/5233505

\Viiaterm

. Midterm: Thursday October 24" 2024 (Week 09), 6:30 PM — 8:00 PM
- |n-person exam, pencil + paper.
- Physical location: TBD (likely 10 Evans + another location on campus)

- Alternate exam times will only be given for truly unavoidable, extraordinary
circumstances. If you truly can't make this midterm time with a good reason,
please write on Ed in a private post ASAP.

Today's lecture

- Some of you may be thinking: “where are the deep neural networks??”
- Today, we'll start talking about our first basic neural network models
- We'll put a full model together in this lecture, mathematically and diagrammatically

- We will then work through the backpropagation algorithm for computing gradients
of the loss function with respect to the neural network parameters

- This algorithm relies on reusing gradient values and matrix-vector products

- Useful to learn and implement once (for the latter, HW1 has you covered)

Recall: logistic regression

« The “linear neural network”

- Setup: Multiclass classification. Suppose we have K classes ("multiclass”, K > 2),
and each input sample consist of d input features

. Given X € R% define fp(X) = 07X ,where @ is a d X K matrix

+ Then, for class ¢ € {0, ..., K — 1}, we have pg(y = c|X)
= softmax(fg (X))

. R ber: softma X — _XPfo(R)e
SITIETDE? Ko (X))c Yico expfo(X);

. Loss function: £(0;X,y) = —logpg (y]x)

For a nice review of logistic regression, and how to
generalize from binary classification to multiclass (K>2)
classification, see: [link]

https://people.tamu.edu/~sji/classes/LR.pdf

A diagram for logistic regression

.

- Often, we will simplify this
diagram:

- - . Omit the 8 box, the
parameters are implicit
— M—' N the diagram
- Omit the layer box

entirely! Denote it with
just the arrow

“linear Iayer”

- Omit the loss box at the
end, if we're drawing

M “jus{ the model”
Ilnear layer

Another type of drawing: computation graphs

Computation graphs are more detailed, rigorous graphical representations

O~) (> (D) —
®

Pictured: the logistic regression model implemented as a series of mathematical
‘orimitive" operations.

you Will see variations on the style of drawing, level of detalil, etc.

Aside: modern deep learning frameworks "compile” network architectures into a
series of "primitive" operators (ex: Tensorflow/pytorch/Caffe/Caffe2). For a

glimpse of this, see the "Operators" catalogue for Caffe2: [link]
8

https://caffe2.ai/docs/operators-catalogue.html

Neural networks: attempt #1

- Our drawing of logistic regression suggests that it is a “single layer model”
- Are neural networks just more of these layers stacked on top of each other?

- What's the issue with this?

- Composing linear transformations together is still linear!

(1) ,(2)

Ilnear layer Ilnear layer M

Ilnear layer M

Making neural networks nonlinear

- One of the main things that makes neural networks great is that they can
represent complex non linear functions

- How? The canonical answer: add nonlinearities after every linear layer
- Also called activation functions

- Basically always element wise functions on the linear layer output

S RelLU(z) = max{0, z}

. Examples: tanh(z), sigmoid(z) = exp{-z}+1

10

Neural networks: attempt #2

7 (1) q(1) 7(2) 9(2)

—— ——
Ilnear layer B8 nonlinearity @ linear layer nonllnearltyI

a(l) a(z) a(l‘) Z

—— —— ——
nonllnear nonlinear nonlinear | M
linear layer
layer layer layer

To simplify the diagram, we often
"merge" the linear layer with the

nonlinear activation function
11

What function is this?

e O represents all our parameters, e.g., |
[W(l), b® . W pm) wﬁna]’ bfmal]

. If our neural network has parameters @ and L hidden layers, then it represents

the function fy (X) = softmax(ATM3(g(AD(...a(AD (X)) ...))))

e O Is the nonlinearity / activation function T
e A'(V) = W'v + b'is the i-th linear layer ”A”j;:;ﬁéw
- What can this function represent? Turns out, a lot > ﬁ
% j,/ Wx A}:

12

Visualizing neural network functions

» https://playground.tensorflow.orqg/

O Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
OO0,000 0.03 v Tanh v None v 0 v Classification v
DATA FEATURES + — 0 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.317
you want to use? do you want to Training loss 0.322
feed in?

X

.
-

Ratio of training to
test data: 50%

o) Xy
Noise: 0
o %o
..
Batch size: 10
XX,
] : '
1 3 0
REGENERATE sin(Xy)
Colors shows
L data, neuron and F t'} .
sin(X,) weight values. '

[] Showtestdata [] Discretize output

13

https://playground.tensorflow.org/

Visualizing neural network functions

- https://playground.tensorflow.orqg/

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4

OO0,000 0.03 v Tanh v None v 0 v Classification v
DATA FEATURES + — 0 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.901
you want to use? do you want to Training loss 0.749

feed in?

Lo

ey
T
(A, W

X

Ratio of training to
test data: 50%

| X 2
Noise: 0 2
5] i
Batch size: 10 X
—0 | | l
0
REGENERATE Bl) —
Colors shows
| data, neuron and F: '
sin(X,) .1 | |

weight values.

[] Showtestdata [] Discretize output

14

https://playground.tensorflow.org/

Visualizing neural network funct

- https://playground.tensor:

"low.orqg/

DATA

Which dataset do
you want to use?

el BN
Bt 1
L R

S
Ny |
W]

(A, W

Ratio of training to
test data: 50%
—-

Moise: 0

Batch size: 10
—e

REGENERATE

FEATURES

Which properties
do you want to
feed in?

X

B
IS

B

sin(X,)

Learning rate

0.03 v

I

Activation Regularization

Tanh - None

0 HIDDEN LAYERS

15

I0NS

Regularization rate Problem type

v Classification v

OUTPUT

Test loss 1.449
Training loss 1.452

Colors shows

data, neuron and F !

weight values.

[] Showtestdata [] Discretize output

https://playground.tensorflow.org/

Visualizing neural network functions

- https://playground.tensorflow.org/

\‘_') Epoch Learning rate Activation Regularization Regularization rate Problem type
4
Run/Pause OOO:OOO 0.03 v Tanh v None v 0 v Classification -
DATA FEATURES + — 1 HIDDEN LAYER OUTPUT
Which dataset do Which properties Test loss 0.521
you want to use? do you want to 0 & Training loss 0.520
feed in?
oS 2 neurons
= ""“r
e (@ -
}(1 [::J. O~ -~ S
} | e o8 o 2
. ®s %o » 4
.i L = > e e
I L) ..l- SR ...
XQ } } i. e S A e *
Ratio of training to " . 0 e i
L) a9 [
test data: 50% _ o : Lo
. ¥ * This is the output ® .
from one neuron. ':".. : o
Hover to see it . LI =
Noise: 0 larger. .)
X ¢ .5 o
. - & . .' ™ o
e % ° PR/
™ LA
Batch size: 10 o oo et o
(X |
0
REGENERATE sin(X4)
Colors shows .
o data, neuron and | !
SIN(AS) - -1 0 1
= weight values.

[] Showtestdata [] Discretize output

16

https://playground.tensorflow.org/

Visualizing neural network functions

» https://playground.tensorflow.orqg/

\‘_') Epoch Learning rate Activation Regularization Regularization rate Problem type
4
OOO " OOO 0.03 v Tanh v None v 0 v Classification v

DATA FEATURES + — 1 HIDDEN LAYER OUTPUT
Which dataset do Which properties Test loss 0.572
you want to use? do you want to h & Training loss 0.626
feed in?
Lt ves 6 neurons
R
nw L1] L
[=
o oo «* 8
: ; @ '&: & ~
/ E L .-' L .::.
2 } 2 Ceoo *
e []
Ratio of training to . o e :

L] L L] [~
test data: 50% o’ L5
B >~ N

(] .:'- L
Noise: 0 v 2 ‘ : »ne
i A A
[g } 59 9% o o8
s % °* L
O LA
Batch size: 10 o oo Set e
— ' |
0
REGENERATE sin(X;) D
7 Colors shows
o data, neuronand | |
Sin(X.) This is the output _ -1 0 1
i from one neuron. WEIth values.
Hover to see it
larger. [] Showtestdata [] Discretize output

https://playground.tensorflow.org/

T'he backpropagation algorithm

Remember: the machine learning methoao

- (or, at least, the deep learning method)

1. Define your model I I I I I
2. Detfine your loss function
£(0;x,v) = —logpg (y|X) (“cross-entropy”)

1 N
0 <0 —C(VQ Zf(@ X;i, Vi)

3. Define your optimizer

4. Run it on a big GPU

walt... we need gradients!

19

What gradients do we need?

N
1
» We want to update our parameters as 8 < 0 — aVy Y _213(9} Xi, Vi)
1=

e O represents all our parameters, e.g., |
VAR TORR T{OR Y0 wfma]’ bfmal]

. Sowe need |Viyay f, Vi ¥, ..., Viwawy €, Vi) £, Vwﬁnalf' Vbﬁna]ﬂ

- How do we compute these gradients? Let’s talk about two different approaches:

- numerical (finite differences) vs. analytical (backpropagation)

20

Finite differences

. The method of finite differences says that, for any sufficiently smooth function f
of

which operates on a vector X, the partial derivative Py 'S approximated by
l

af __ f(xtee;)—f(x—ce;)

, where €; denotes a “"one hot” vector
0Xx; 2€

. This is the definition of (partial) derivatives as € = 0

- Think about how slow this would be to do for all our network parameters...
Nevertheless, it can be useful as a method for checking gradients

21

Computing gradients via backpropagation

- The backpropagation algorithm is a much faster and more efticient method for
computing gradients for neural network parameters

- |t made training large neural networks feasible and practical
- Backpropagation works “backward” through the network, which allows for:
- reusing gradient values that have already been computed

- computing matrix-vector products rather than matrix-matrix products, since the
l0ss Is a scalar!

- |t's pretty confusing the first (or second, or third, ...) time you see it

22

Backpropagation: the math = =» a2 -
nonlinear ’ nonlinear ’ linear ’ M

layer layer layer

first, let's do the “forward pass” through our network, from input to prediction

let’'s work with two hidden layers, for concreteness

e (3)

VL (2)

L 4:‘ﬂ’l‘
&c\{_b

s YAls s & vactofl

n.*:c.\‘b T

= Z' Q:R? , yc - 'Hf\ :V\d.\.*-

\-k\r\ﬂ W o maanltS

23

Backpropagation: the math = =» a2 -
nonlinear ’ nonlinear ’ linear ’ M

layer layer layer

7 — mea]a(z) + bfma] represents our "logits" (aka inputs to softmax)

Mals § a yackol
el
E:::.\'h T
2. CRP &
\ "EU\:L'\. W o h“mh—br

PH(YL K'._) - ¥i -t tndex

boq gp Lye I xa) = 2y - LegBexp
E(e} "*If‘{:): %jztx‘)t "2y,

waocn - VNQ}QEL +or al\ \l\\fb

24

Backpropagation: the math = =» a2 -
nonlinear ’ nonlinear ’ linear ’ M

first let’s look at \7w £fina 13 and \7b £ina]f ayer ayer ayer

remember: £ = log),expz — z,,. ,and also Z = winaly(2) 1 L/inal

By multivariate chain rule: using the
matrix shape conventions defined

here: [link]

exp 2 i one ek vector

https://math.stackexchange.com/a/3724367

Backpropagation: the math » =« -
now let's ook at Vw(z)f and Vb(z)f woninear [nonlinear inear M

layer layer layer

remember: al%?) = O'(Z(z)), and also z(#) = W(2)g(1) 4 p(2)
How does the output of my layer How does the loss
change w.r.t. my layer's change w.r.t. this layer's
parameters? outputs?

|

Observation: gradients for a given layer are functions of local
things (eg Inputs to layer during forward pass, and how the
layer's outputs affect the loss gradient)

d pattern emerges... do yOu sSee t? Suggests a dynamic-programming-like way to implement
s backpropagation in a way that mirrors the computation graph

Aside: chain rule

Chain rule L—Y——=%
d dz dy dz
) = o= GR
/ y re R"ye R™
Jacobian of g Jacoblan of f
Row or column?
In this lecture: In some textbooks:
dz dz dy
de dy dx
dx | ,
dy Just two different conventions!

(dy _ dy;
dr) .. dx;
ZJ ¢ Slides from Prof. Sergey Levine's SP21 CS 182, Lecture 05: [link]

https://cs182sp21.github.io/

Chain rule for neural networks

A neural network is just a composition of functions

So we can use chain rule to compute gradients!

=|p=

T linear (1) linear
2x1 aver 3x1 3x1 aver

Wb w2 ﬁ(Z(Q))
dLl dzD) daM d2(2) dL dLl dz(?) dC

AV~ aw @D gD da@) d2(2) AWV @~ aw®@ 422)

m Prof. Sergey Levine's SP21 CS 182, Lecture 05

https://cs182sp21.github.io/

Does it work?

ac dzM daV) dz? dL
dW @ dW® dz(D) dal) dz(2)

We can calculate each of these Jacobians!

Example:
Why might this be a bad idea?

(2) — w2 ,1) - '
27 =W"a if each z(*) or a(¥ has about n dims...

)T each Jacobian is about n X n dimensions
=W

da(1) matrix multiplication is O(n°)

do we care”

AlexNet has layers with 4096 units...

https://cs182sp21.github.io/

Doing it more efficiently

this product is cheap: O(n®) |dea: start on the right

this product is expensive

dz? dL
|/ \ compute —=5y -~z = 0 first

(| g
(1) (1) 7,(2)
dL dz da'\"’ dz dL a7 (1) (1)

1) — 1) J>(1) Jq1) J-(2) _
dW dW L) dz\1Y) da'l) dz T T dz(1)6

/ \ —

n X n n % 1 this product is cheap: O(n?)

this is always true because
the loss is scalar-valued!

dat) ¢
compute ~>=70 =7y

ac dzM
ava — aw®’
\ }
|

this product is cheap: O(n?)

Slides from Prof. Sergey Levine's SP21 CS 182, Lecture 05: [link]

https://cs182sp21.github.io/

The backpropagation algorithm

(4 e 7) .
Classic” version | | B

sigmoid: sigmoid: sigmoid' linear '

layer layer layer layer

x JED R C-) RN C) NN €

(@)oo iy>—(g) Clear lye>—Cftnn)—C Py
n layers
2x1 w4 aD 1 (n) ,(n—1) \ Y ;
AN
vy Of L(z™)

forward pass: calculate each a(” and z(¥ " Y - f . o (n—1)

backward pass:

dL
dz(n)

for each f with input =z, & params 0 from end to start:

ac | df < g =
doy db;
5 < dfé% /- I I

) OkEf

initialize 6 =

Slides from Prof. Sergey Levine's SP21 CS 182, Lecture 05: [link]

https://cs182sp21.github.io/

Backpropagation: the summary

. First, we perform a forward pass and cache all the intermediate Z(l), alV

- Then, we work our way backwards to compute all the Viy €, Vi, €

- (Going backwards allows us to reuse gradients that have already been computed

- |t also results in matrix-vector product computations, which are far more efticient
than matrix-matrix product computations

- Atter all the gradients have been computed, we are ready to take a gradient step

- Neural network optimization repeats this over and over — more on that next week

32

Confused?

- Backpropagation can be tricky and unintuitive

- What can help Is trying to work out the math on your own to see the patterns
- Implementing it for HW1 should also help solidify the concept

- But, most importantly: we don’t have to do it ourselves these days!

- Deep learning libraries do it for us (ex: pytorch, tensortlow)

33

	Slide 1: Lecture 04: Neural network basics
	Slide 2: Announcements
	Slide 3: Office hours, discussions
	Slide 4: Midterm
	Slide 5: Today’s lecture
	Slide 6: Recall: logistic regression
	Slide 7: A diagram for logistic regression
	Slide 8: Another type of drawing: computation graphs
	Slide 9: Neural networks: attempt #1
	Slide 10: Making neural networks nonlinear
	Slide 11: Neural networks: attempt #2
	Slide 12: What function is this?
	Slide 13: Visualizing neural network functions
	Slide 14: Visualizing neural network functions
	Slide 15: Visualizing neural network functions
	Slide 16: Visualizing neural network functions
	Slide 17: Visualizing neural network functions
	Slide 18: The backpropagation algorithm
	Slide 19: Remember: the machine learning method
	Slide 20: What gradients do we need?
	Slide 21: Finite differences
	Slide 22: Computing gradients via backpropagation
	Slide 23: Backpropagation: the math
	Slide 24: Backpropagation: the math
	Slide 25: Backpropagation: the math
	Slide 26: Backpropagation: the math
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Backpropagation: the summary
	Slide 33: Confused?

