
Lecture 03: ML Review (2)
Data C182. Week 2, Thursday Sept 5th 2024.
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Speaker: Eric Kim



Announcements: Course platforms
• Ed: We will make all announcements via the course Ed [link]. It's your 

responsibility to actively monitor Ed so that you don't miss anything important!

• Ex: "Week 2 Announcements" [link]

• Gradescope [link]: this is where we will release homework, where you will submit, 
and where the assignment autograder lives.

• Course website [link]: this is where things like: lecture slides, schedule, office 
hour times, syllabus/policy lives.

• bCourses [link]: Mainly only used for hosting lecture recordings, in "Media 
Gallery" [link]
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Credit: Data C182 Fall 2024 course logo 

designed by Sean Liu (2024): 

https://www.instagram.com/seanyliu/

https://edstem.org/us/courses/64085/discussion/
https://edstem.org/us/courses/64085/discussion/5212313
https://www.gradescope.com/courses/837491
https://datac182fa24.github.io/
https://bcourses.berkeley.edu/courses/1538180
https://bcourses.berkeley.edu/courses/1538180/external_tools/90481
https://www.instagram.com/seanyliu/


HW01

• HW01: Released yesterday! Due Tues Oct 1st at 11:59 PM PST.

• Tip: start early! This is a fairly hefty assignment.

• Please ask questions on Ed! Ed is a great resource to use.

• For public posts, please limit the amount of code you submit (eg don't submit 
code that others could use in their solution, "within reason/taste"). For private 
posts, you can post all the code that you want.

• Collaboration policy [link]: you can collaborate with others at a high level only: all 
coding must be done on your own.

• Regarding issues around dependency installations: we're working on it. We'll 
update on Ed when we've found a better way forward, particularly for 
Windows/MacOS students.
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https://datac182fa24.github.io/syllabus/#collaboration


Discussion Section
• Recall: Data C182 students are not 

assigned to a discussion section yet

• Solution: this week, DSUS sent out emails 
to all students asking them their 
preferences for discussion sections.

• Please fill this form out ASAP, due Friday 
(9/6) at noon. 

• Ed post: [link]

• Discussion schedule is on the course 
webpage [link]

• Staff bios: [link]
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https://edstem.org/us/courses/64085/discussion/5224727
https://datac182fa24.github.io/schedule/
https://datac182fa24.github.io/staff/


Academic Integrity (bCourses)
• This week, you all will receive an 

assignment on bCourses titled something 
like "Academic Integrity Assignment", 
along with an email notice. [link]

• Important: all students must complete this 
assignment in bCourse by Week 4!

• From above: "In accordance with federal 
requirements established by the 
Department of Education, we need to 
verify that students are participating in 
their courses by the end of the fourth 
week of classes…confirm the eligibility of 
your students to receive financial aid.
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https://berkeley.service-now.com/kb_view.do?sysparm_article=KB0014634


Today’s lecture

• Last lecture, we laid out the general machine learning method, and we defined 
probabilistic models (for classification), likelihood based loss functions, 
and gradient based optimization

• Now that we have a general recipe for how to learn parameters, we can ask:

• If my learned parameters minimize the training loss, am I done? Should I deploy 
my model and move on?

• How do I determine whether I am “satisfied” with the model?

• What can I do if I am not satisfied with the model?

• How to formulate the above questions/answers into an organized framework?
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True risk and empirical risk
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True risk and empirical risk
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Overfitting and underfitting: intuition

• Two very common failure modes of ML models

• Overfitting: "My model does well on the training data, but does poorly on unseen 
(test) data."

• (In the risk framework) When the empirical risk is low, but the true risk is high

• Common causes: This can happen if the dataset is too small and/or the model 
is too "powerful"



Overfitting and underfitting: intuition

• Underfitting: "My model does poorly on the training data, and also does poorly on 
unseen (test) data."

• (In the risk framework) When the empirical risk is high, and the true risk is also 
high

• Common causes: This can happen if the model is too “weak” and/or the 
optimization doesn’t work well (i.e., the training loss does not decrease 
satisfactorily)

• What constitutes “high”? Often, that is up to the practitioner — that is, one 
must ask: “How well do I expect my model to work for this problem?”

• Generally, the true risk won’t be lower than the empirical risk



Model capacity

• Intuition: The capacity of a model is a 
measure of what kinds of 
functions/patterns it can represent.

• Examples:

• A linear regression model is a very low 
capacity model: while it can model 
linear phenomenon well, it can't model 
anything nonlinear.

• Large language models (LLMs) like 
GPT-3 are (very) high capacity models 
that can model human language and 
knowledge to an impressive quality.

Prompt: please describe a study 

strategy to prepare for Data C182 "Deep 

Neural Networks", a course that is a 

deep dive into neural networks.

Response: Sure, I can do that for you. 

First, I'd recommend getting familiar with 

matrix/vector calculations, gradients, 

optimization, the pytorch library…

Linear models are a 

poor fit for nonlinear 

phenomenon

Source: https://machinelearningmastery.com/the-transformer-model/

https://arxiv.org/abs/1706.03762

https://machinelearningmastery.com/the-transformer-model/
https://arxiv.org/abs/1706.03762


Model capacity

• Concrete example: suppose we have a 
regression dataset of points in R^2. Let's 
restrict our model to the space of 
polynomial functions: 

• f(x) = a_0 * x + a_1 + x^2 + a_2 + a^3 
+ …

• A "high capacity" model can fit to many 
kinds of phenomenon

• Ex: high-degree polynomials.

• A "low capacity" model can represent 
only a limited amount of phenomenon

• Ex: degree-1 polynomial (aka straight 
line)

Simpler More 

Complex

Very high degree 

polynomial

Low degree 

polynomial (eg linear 

function)

Source: https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9

https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9


Model capacity

• Similar to the n-degree polynomial regression example, we can make similar 
statements when comparing different ML model approaches

Simpler
More 

Complex

Linear 

regression, 

logistic 

regression

SVMs, random 

forests, 

"shallow" neural 

networks

"Deep" neural 

networks

(a simplified caricature, but useful for intuitions)

Notably: adding more training data to low capacity models 

stops helping after a certain (fairly easy to attain) point. But, for 

very-high capacity models typically one can keep adding more 

training data, and performance will continue to get better.

"Classic" ML, eg CS 189

Data C182!



Model capacity

• …and even within DNNs, there's stark differences in model capacity.

• While not 100% precise, a model's "parameter count" is an often-used measure 
for a model's capacity.

• Ex: ResNet50 (a successful ConvNet from 2015) has 25.6M parameters ([link])

• GPT-3 (OpenAI, 2020) has 20B – 175B parameters ([link] [link])

Simpler
More 

Complex

Two layer NNs

Convolutional 

networks, lightweight 

text encoders like 

LSTM, etc

Large language 

models (LLMs), 

generative AI

(a simplified caricature, but useful for intuitions)

https://huggingface.co/microsoft/resnet-50
https://community.openai.com/t/how-many-parameters-does-gpt-3-5-have/648417/3
https://en.wikipedia.org/wiki/GPT-3


Model capacity and under/overfitting

• One useful knob for controlling 
underfitting vs overfitting is: model 
complexity (aka "capacity")

•  For a fixed training dataset, we have 
the following rule of thumb (or "good 
guesses"):

• If you're underfitting: often means 
that the model is too simple (ex: 
trying to fit a linear model to a 
nonlinear data distribution)

• If you're overfitting: often means that 
your model is too complex and is 
fitting to the noise in the data.

Source: https://towardsdatascience.com/overfitting-and-underfitting-principles-ea8964d9c45c

Model too 

simple

Model too 

complex

https://towardsdatascience.com/overfitting-and-underfitting-principles-ea8964d9c45c


Model class and capacity

• We use the term model class to describe the set of all possible functions that 
the chosen model can represent via different parameter settings

• E.g., the set of all linear functions, the set of all neural network functions with a 
certain network architecture, …

• Roughly speaking, the capacity of a model (class) is a measure of how many 
different functions it can represent

• E.g., neural networks have greater capacity than linear models, because neural 
networks can represent linear functions and more
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Questions for the rest of the lecture

• How do we know whether/if we are overfitting or underfitting?

• Given a dataset of a particular size, how do we select:

• a model class?

• an algorithm?

• hyperparameters?
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Diagnosing overfitting and underfitting
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the dataset

Training and validation sets
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Remember: the machine learning method
• (or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, …

2. Define your loss function — which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU
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Introducing: the machine learning workflow
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You’re done?
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• What does “you’re done” mean?

• In industry, maybe it means: deploy your model

• In research, competitions, this class, etc., it means: report your 
model’s performance on a test set

• The test set is reserved for reporting final performance only and 
must never, ever be used for anything else



Combating overfitting

• Generally, underfitting is not as common of a concern as overfitting

• Especially with deep learning, we can just keep making the network bigger…

• … sometimes even without regard for overfitting! More on this later

• What tools and techniques do we have at our disposal if overfitting does occur?

• Make the network smaller? But we like big models

• Collect more data? This is a great option, if possible

• Add more inductive biases — let’s discuss how to do this via regularization
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Regularization
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Maximum a posteriori estimation
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Perspectives on regularization

• From a Bayesian perspective, the regularizer encodes our prior beliefs about 
which parameters are (or should be) more likely vs. less likely

• We can also interpret regularization through other perspectives:

• Numerical perspective: sometimes the regularizer makes an underdetermined 
problem well determined

• Optimization perspective: sometimes the regularizer makes the loss function 
better conditioned and thus easier to “traverse”

• Paradoxically, more regularization can actually lead to less underfitting!
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https://en.wikipedia.org/wiki/Underdetermined_system


Recap

• So far: how do we know whether/if we are overfitting or underfitting?

• By measuring and comparing training set loss vs. validation set loss

• Then, we “tune the knobs” of model capacity, optimization, regularization, …

• Next: given a dataset of a particular size, how do we select settings for these knobs?

• There are two approaches to answering this question that seem somewhat at odds: 
the “traditional”/statistical approach, which posits a “bias-variance tradeoff”, and the 
“deep learning” approach, which suggests that we just keep cranking the knobs up

• Resolving the apparent inconsistency between these two views is the subject of much 
ongoing research
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A probabilistic model for continuous outputs
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This lines up with our intuition that the regression loss should look something like 

distance(predicted, target). Here, assuming that the distribution is normally 

distributed leads to minimizing the (squared) L2 error.

"Ideal/true" function, 

deterministic.

"Label 

Noise"

Let's model our 

attempt to achieve 

the "ideal/true" 

distribution as a 

Gaussian

f_theta is our 

learned ML model



Intuition: bias and variance
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The bias-variance decomposition (“tradeoff”)
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The bias-variance decomposition (“tradeoff”)
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Tip: cross terms evaluate to 0 due to 

independence/deterministic. For derivation details, see: 

[link]

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff#Bias%E2%80%93variance_decomposition_of_mean_squared_error


The bias-variance decomposition

Bias Variance
Irreducible 

error

Expected model error 

(over all training 

datasets)

Ex: simple models (eg linear reg) will have high 

bias for nonlinear datasets

Ex: complex models (eg DNNs) have 

high variance



The bias-variance tradeoff?

• Traditional statistics views bias and variance as “competing” sources of error that 
are regulated by model complexity

• High variance means insufficient data + a complex model class — overfitting

• High bias means an insufficiently complex model class — underfitting

• Traditional wisdom: find the "sweet spot" for model complexity to balance 
variance+bias (aka get your "best" model that generalizes well to unseen data)

34

Ex: simple models (linear reg) have 

high bias (for nonlinear datasets), but 

low variance, potentially leading to 

underfitting

Ex: complex models (DNNs) have low 

bias, but high variance, potentially 

leading to overfitting

"sweet spot"



Bias-variance tradeoff: Why care?

• The Bias-Variance tradeoff gives us a nice theoretical foundation for intuitions 
like:

• As I increase the complexity of my model, I'll expect my training error to 
(perhaps arbitrarily) go down ("bias"), but my model's generalizability on unseen 
data may suffer ("variance").

• For DNNs, when training the same model on the same dataset multiple times 
(modulo different random seeds), performance can vary quite a bit (model 
weights certainly will!). This is the "variance" term at play!
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Enter the deep learning perspective…
• Allow me to quote Prof. Jitendra Malik  

• “Modern neural network practice doesn’t treat this as a tradeoff — go as high 
capacity as you can (e.g., networks like GPT-3 push the boundary of current 
computational hardware)”

• “We don’t fear overfitting!”

36Source: https://arxiv.org/abs/1812.11118

https://arxiv.org/abs/1812.11118


An industry perspective

• In my personal experience working in industry: go for as high-capacity 
("expressive") ML models as possible, while being constrained by compute 
resources and cost ($)

• Train resource constraints: GPU memory, training throughput

• Practical tip: you want a model arch that can train relatively quickly (eg 1-2 
days max ideally) so that you can run many experiments. Developer iteration 
speed is very important.

• Inference (serving) resource constraints: GPU memory, inference 
latency/throughput.

• GPU memory is a valuable, limited resource. Use it well!

37



Next steps

• At this point, we've provided a theoretical justification for the standard ML DNN 
pipeline of training your model on a labeled dataset with an appropriate loss 
function (aka "fitting a model to data via MLE")

• Next, we'll start getting into the details of neural network models: how they're 
constructed, how they're trained, etc.
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