
Lecture 03: ML Review (2)
Data C182. Week 2, Thursday Sept 5th 2024.

1

Speaker: Eric Kim

Announcements: Course platforms
• Ed: We will make all announcements via the course Ed [link]. It's your

responsibility to actively monitor Ed so that you don't miss anything important!

• Ex: "Week 2 Announcements" [link]

• Gradescope [link]: this is where we will release homework, where you will submit,
and where the assignment autograder lives.

• Course website [link]: this is where things like: lecture slides, schedule, office
hour times, syllabus/policy lives.

• bCourses [link]: Mainly only used for hosting lecture recordings, in "Media
Gallery" [link]

2

Credit: Data C182 Fall 2024 course logo

designed by Sean Liu (2024):

https://www.instagram.com/seanyliu/

https://edstem.org/us/courses/64085/discussion/
https://edstem.org/us/courses/64085/discussion/5212313
https://www.gradescope.com/courses/837491
https://datac182fa24.github.io/
https://bcourses.berkeley.edu/courses/1538180
https://bcourses.berkeley.edu/courses/1538180/external_tools/90481
https://www.instagram.com/seanyliu/

HW01

• HW01: Released yesterday! Due Tues Oct 1st at 11:59 PM PST.

• Tip: start early! This is a fairly hefty assignment.

• Please ask questions on Ed! Ed is a great resource to use.

• For public posts, please limit the amount of code you submit (eg don't submit
code that others could use in their solution, "within reason/taste"). For private
posts, you can post all the code that you want.

• Collaboration policy [link]: you can collaborate with others at a high level only: all
coding must be done on your own.

• Regarding issues around dependency installations: we're working on it. We'll
update on Ed when we've found a better way forward, particularly for
Windows/MacOS students.

3

https://datac182fa24.github.io/syllabus/#collaboration

Discussion Section
• Recall: Data C182 students are not

assigned to a discussion section yet

• Solution: this week, DSUS sent out emails
to all students asking them their
preferences for discussion sections.

• Please fill this form out ASAP, due Friday
(9/6) at noon.

• Ed post: [link]

• Discussion schedule is on the course
webpage [link]

• Staff bios: [link]

4

https://edstem.org/us/courses/64085/discussion/5224727
https://datac182fa24.github.io/schedule/
https://datac182fa24.github.io/staff/

Academic Integrity (bCourses)
• This week, you all will receive an

assignment on bCourses titled something
like "Academic Integrity Assignment",
along with an email notice. [link]

• Important: all students must complete this
assignment in bCourse by Week 4!

• From above: "In accordance with federal
requirements established by the
Department of Education, we need to
verify that students are participating in
their courses by the end of the fourth
week of classes…confirm the eligibility of
your students to receive financial aid.

5

https://berkeley.service-now.com/kb_view.do?sysparm_article=KB0014634

Today’s lecture

• Last lecture, we laid out the general machine learning method, and we defined
probabilistic models (for classification), likelihood based loss functions,
and gradient based optimization

• Now that we have a general recipe for how to learn parameters, we can ask:

• If my learned parameters minimize the training loss, am I done? Should I deploy
my model and move on?

• How do I determine whether I am “satisfied” with the model?

• What can I do if I am not satisfied with the model?

• How to formulate the above questions/answers into an organized framework?

6

True risk and empirical risk

7

True risk and empirical risk

8

Overfitting and underfitting: intuition

• Two very common failure modes of ML models

• Overfitting: "My model does well on the training data, but does poorly on unseen
(test) data."

• (In the risk framework) When the empirical risk is low, but the true risk is high

• Common causes: This can happen if the dataset is too small and/or the model
is too "powerful"

Overfitting and underfitting: intuition

• Underfitting: "My model does poorly on the training data, and also does poorly on
unseen (test) data."

• (In the risk framework) When the empirical risk is high, and the true risk is also
high

• Common causes: This can happen if the model is too “weak” and/or the
optimization doesn’t work well (i.e., the training loss does not decrease
satisfactorily)

• What constitutes “high”? Often, that is up to the practitioner — that is, one
must ask: “How well do I expect my model to work for this problem?”

• Generally, the true risk won’t be lower than the empirical risk

Model capacity

• Intuition: The capacity of a model is a
measure of what kinds of
functions/patterns it can represent.

• Examples:

• A linear regression model is a very low
capacity model: while it can model
linear phenomenon well, it can't model
anything nonlinear.

• Large language models (LLMs) like
GPT-3 are (very) high capacity models
that can model human language and
knowledge to an impressive quality.

Prompt: please describe a study

strategy to prepare for Data C182 "Deep

Neural Networks", a course that is a

deep dive into neural networks.

Response: Sure, I can do that for you.

First, I'd recommend getting familiar with

matrix/vector calculations, gradients,

optimization, the pytorch library…

Linear models are a

poor fit for nonlinear

phenomenon

Source: https://machinelearningmastery.com/the-transformer-model/

https://arxiv.org/abs/1706.03762

https://machinelearningmastery.com/the-transformer-model/
https://arxiv.org/abs/1706.03762

Model capacity

• Concrete example: suppose we have a
regression dataset of points in R^2. Let's
restrict our model to the space of
polynomial functions:

• f(x) = a_0 * x + a_1 + x^2 + a_2 + a^3
+ …

• A "high capacity" model can fit to many
kinds of phenomenon

• Ex: high-degree polynomials.

• A "low capacity" model can represent
only a limited amount of phenomenon

• Ex: degree-1 polynomial (aka straight
line)

Simpler More

Complex

Very high degree

polynomial

Low degree

polynomial (eg linear

function)

Source: https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9

https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9

Model capacity

• Similar to the n-degree polynomial regression example, we can make similar
statements when comparing different ML model approaches

Simpler
More

Complex

Linear

regression,

logistic

regression

SVMs, random

forests,

"shallow" neural

networks

"Deep" neural

networks

(a simplified caricature, but useful for intuitions)

Notably: adding more training data to low capacity models

stops helping after a certain (fairly easy to attain) point. But, for

very-high capacity models typically one can keep adding more

training data, and performance will continue to get better.

"Classic" ML, eg CS 189

Data C182!

Model capacity

• …and even within DNNs, there's stark differences in model capacity.

• While not 100% precise, a model's "parameter count" is an often-used measure
for a model's capacity.

• Ex: ResNet50 (a successful ConvNet from 2015) has 25.6M parameters ([link])

• GPT-3 (OpenAI, 2020) has 20B – 175B parameters ([link] [link])

Simpler
More

Complex

Two layer NNs

Convolutional

networks, lightweight

text encoders like

LSTM, etc

Large language

models (LLMs),

generative AI

(a simplified caricature, but useful for intuitions)

https://huggingface.co/microsoft/resnet-50
https://community.openai.com/t/how-many-parameters-does-gpt-3-5-have/648417/3
https://en.wikipedia.org/wiki/GPT-3

Model capacity and under/overfitting

• One useful knob for controlling
underfitting vs overfitting is: model
complexity (aka "capacity")

• For a fixed training dataset, we have
the following rule of thumb (or "good
guesses"):

• If you're underfitting: often means
that the model is too simple (ex:
trying to fit a linear model to a
nonlinear data distribution)

• If you're overfitting: often means that
your model is too complex and is
fitting to the noise in the data.

Source: https://towardsdatascience.com/overfitting-and-underfitting-principles-ea8964d9c45c

Model too

simple

Model too

complex

https://towardsdatascience.com/overfitting-and-underfitting-principles-ea8964d9c45c

Model class and capacity

• We use the term model class to describe the set of all possible functions that
the chosen model can represent via different parameter settings

• E.g., the set of all linear functions, the set of all neural network functions with a
certain network architecture, …

• Roughly speaking, the capacity of a model (class) is a measure of how many
different functions it can represent

• E.g., neural networks have greater capacity than linear models, because neural
networks can represent linear functions and more

16

Questions for the rest of the lecture

• How do we know whether/if we are overfitting or underfitting?

• Given a dataset of a particular size, how do we select:

• a model class?

• an algorithm?

• hyperparameters?

17

Diagnosing overfitting and underfitting

18

the dataset

Training and validation sets

19

Remember: the machine learning method
• (or, at least, the deep learning method)

1. Define your model — which neural network, what does it output, …

2. Define your loss function — which parameters are good vs. bad?

3. Define your optimizer — how do we find good parameters?

4. Run it on a big GPU

20

Introducing: the machine learning workflow

21

You’re done?

22

• What does “you’re done” mean?

• In industry, maybe it means: deploy your model

• In research, competitions, this class, etc., it means: report your
model’s performance on a test set

• The test set is reserved for reporting final performance only and
must never, ever be used for anything else

Combating overfitting

• Generally, underfitting is not as common of a concern as overfitting

• Especially with deep learning, we can just keep making the network bigger…

• … sometimes even without regard for overfitting! More on this later

• What tools and techniques do we have at our disposal if overfitting does occur?

• Make the network smaller? But we like big models

• Collect more data? This is a great option, if possible

• Add more inductive biases — let’s discuss how to do this via regularization

23

Regularization

24

Maximum a posteriori estimation

25

26

Perspectives on regularization

• From a Bayesian perspective, the regularizer encodes our prior beliefs about
which parameters are (or should be) more likely vs. less likely

• We can also interpret regularization through other perspectives:

• Numerical perspective: sometimes the regularizer makes an underdetermined
problem well determined

• Optimization perspective: sometimes the regularizer makes the loss function
better conditioned and thus easier to “traverse”

• Paradoxically, more regularization can actually lead to less underfitting!

27

https://en.wikipedia.org/wiki/Underdetermined_system

Recap

• So far: how do we know whether/if we are overfitting or underfitting?

• By measuring and comparing training set loss vs. validation set loss

• Then, we “tune the knobs” of model capacity, optimization, regularization, …

• Next: given a dataset of a particular size, how do we select settings for these knobs?

• There are two approaches to answering this question that seem somewhat at odds:
the “traditional”/statistical approach, which posits a “bias-variance tradeoff”, and the
“deep learning” approach, which suggests that we just keep cranking the knobs up

• Resolving the apparent inconsistency between these two views is the subject of much
ongoing research

28

A probabilistic model for continuous outputs

29

This lines up with our intuition that the regression loss should look something like

distance(predicted, target). Here, assuming that the distribution is normally

distributed leads to minimizing the (squared) L2 error.

"Ideal/true" function,

deterministic.

"Label

Noise"

Let's model our

attempt to achieve

the "ideal/true"

distribution as a

Gaussian

f_theta is our

learned ML model

Intuition: bias and variance

30

The bias-variance decomposition (“tradeoff”)

31

The bias-variance decomposition (“tradeoff”)

32

Tip: cross terms evaluate to 0 due to

independence/deterministic. For derivation details, see:

[link]

https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff#Bias%E2%80%93variance_decomposition_of_mean_squared_error

The bias-variance decomposition

Bias Variance
Irreducible

error

Expected model error

(over all training

datasets)

Ex: simple models (eg linear reg) will have high

bias for nonlinear datasets

Ex: complex models (eg DNNs) have

high variance

The bias-variance tradeoff?

• Traditional statistics views bias and variance as “competing” sources of error that
are regulated by model complexity

• High variance means insufficient data + a complex model class — overfitting

• High bias means an insufficiently complex model class — underfitting

• Traditional wisdom: find the "sweet spot" for model complexity to balance
variance+bias (aka get your "best" model that generalizes well to unseen data)

34

Ex: simple models (linear reg) have

high bias (for nonlinear datasets), but

low variance, potentially leading to

underfitting

Ex: complex models (DNNs) have low

bias, but high variance, potentially

leading to overfitting

"sweet spot"

Bias-variance tradeoff: Why care?

• The Bias-Variance tradeoff gives us a nice theoretical foundation for intuitions
like:

• As I increase the complexity of my model, I'll expect my training error to
(perhaps arbitrarily) go down ("bias"), but my model's generalizability on unseen
data may suffer ("variance").

• For DNNs, when training the same model on the same dataset multiple times
(modulo different random seeds), performance can vary quite a bit (model
weights certainly will!). This is the "variance" term at play!

35

Enter the deep learning perspective…
• Allow me to quote Prof. Jitendra Malik

• “Modern neural network practice doesn’t treat this as a tradeoff — go as high
capacity as you can (e.g., networks like GPT-3 push the boundary of current
computational hardware)”

• “We don’t fear overfitting!”

36Source: https://arxiv.org/abs/1812.11118

https://arxiv.org/abs/1812.11118

An industry perspective

• In my personal experience working in industry: go for as high-capacity
("expressive") ML models as possible, while being constrained by compute
resources and cost ($)

• Train resource constraints: GPU memory, training throughput

• Practical tip: you want a model arch that can train relatively quickly (eg 1-2
days max ideally) so that you can run many experiments. Developer iteration
speed is very important.

• Inference (serving) resource constraints: GPU memory, inference
latency/throughput.

• GPU memory is a valuable, limited resource. Use it well!

37

Next steps

• At this point, we've provided a theoretical justification for the standard ML DNN
pipeline of training your model on a labeled dataset with an appropriate loss
function (aka "fitting a model to data via MLE")

• Next, we'll start getting into the details of neural network models: how they're
constructed, how they're trained, etc.

38

	Slide 1: Lecture 03: ML Review (2)
	Slide 2: Announcements: Course platforms
	Slide 3: HW01
	Slide 4: Discussion Section
	Slide 5: Academic Integrity (bCourses)
	Slide 6: Today’s lecture
	Slide 7: True risk and empirical risk
	Slide 8: True risk and empirical risk
	Slide 9: Overfitting and underfitting: intuition
	Slide 10: Overfitting and underfitting: intuition
	Slide 11: Model capacity
	Slide 12: Model capacity
	Slide 13: Model capacity
	Slide 14: Model capacity
	Slide 15: Model capacity and under/overfitting
	Slide 16: Model class and capacity
	Slide 17: Questions for the rest of the lecture
	Slide 18: Diagnosing overfitting and underfitting
	Slide 19: Training and validation sets
	Slide 20: Remember: the machine learning method
	Slide 21: Introducing: the machine learning workflow
	Slide 22: You’re done?
	Slide 23: Combating overfitting
	Slide 24: Regularization
	Slide 25: Maximum a posteriori estimation
	Slide 26:
	Slide 27: Perspectives on regularization
	Slide 28: Recap
	Slide 29: A probabilistic model for continuous outputs
	Slide 30: Intuition: bias and variance
	Slide 31: The bias-variance decomposition (“tradeoff”)
	Slide 32: The bias-variance decomposition (“tradeoff”)
	Slide 33: The bias-variance decomposition
	Slide 34: The bias-variance tradeoff?
	Slide 35: Bias-variance tradeoff: Why care?
	Slide 36: Enter the deep learning perspective…
	Slide 37: An industry perspective
	Slide 38: Next steps

